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Abstract

This research is an extension of work using a genetic algorithm to optimize

certain parameters of a disaggregated constellation for most cost-effective coverage.

This work looks at imaging sensor coverage of a target deck. The US Army has

several current projects that use disaggregated constellations with imaging payloads

to provide warfighters with pertinent area data and images, such as Kestrel Eye and

Nano Eye, to which this work is applicable.

Parameters varied in this optimization affect Walker constellation characteris-

tics, orbital elements, and sensor size. Walker parameter variables are number of

planes, number of satellites per plane, true anomaly spread, and RAAN increment.

All classical orbital elements are variable, although a circular, low-Earth orbit is as-

sumed. Sensor size is varied dependent upon sensor diameter. These parameters are

applied to constellations of small satellites (under 500 kilograms) and large satellites

(300 to 5200 kilograms).

The Unmanned Spacecraft Cost Model (USCM) and the Small Spacecraft Cost

Model (SSCM) are used to roughly determine the cost of each proposed mission. The

sensor effectiveness is determined by the General Imaging Quality Equation (GIQE).

The model created in this work produces notional results for the Kestrel Eye

program, yielding a 15 minute response time for a given target deck, but can be

customized to optimize any satellite architecture problem. This work should be refer-

enced by sponsors to save money and increase capabilities as space architectures are

made more resilient and efficient.
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Disaggregated Imaging Spacecraft

Constellation Optimization

with a Genetic Algorithm

I. Introduction

Many of man’s great accomplishments have been due to unconventional think-

ing. The space industry is no different; although we have made great strides thus far,

it seems that the next big breakthrough will require a change in mindset. Disaggre-

gation has lately been discussed as a revolutionary means to facilitate the industry’s

next leap forward in space exploration, and the Air Force is considering it as a means

to enhance resiliency of space systems. The following research will assert that disag-

gregated architectures and fractionated systems are a resilient and cost-effective way

to conduct imaging and surveillance operations, and will analyze the results of its

implementation on existing concepts.

1.1 Motivation

The government typically imposes many requirements on a single mission, which

is known as aggregation. Aggregation has a number of unintended but harmful con-

sequences, and the application of disaggregation combined with mixed constellations

has been endorsed by present and former commanders of Air Force Space Command

(AFSPC) and US Strategic Command (STRATCOM) [1]. In MilSat Magazine, MIL-

SATCOM director Ron Burch focuses on the U.S. Military Satellite Communications

Systems Directorate (MILSATCOM), an example of a complex system that suffers

from specific consequences of aggregation: “fewer assets, increased cost and schedule

uncertainties, and increasing delays in the fielding of new capabilities to support the

warfighter [2].” Similar results can be seen across the board. All this to say, the

need for disaggregation in space has been acknowledged, and there is already much

research in this area, which will be described in Chapter 2.
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As more mission requirements are levied on the system and system complexity

subsequently increases, timelines tend to stretch, components tend to get more expen-

sive, and cost and schedule risks become more difficult to predict [2]. This “require-

ments creep” is a well-known and studied phenomenon in systems engineering, and

the systems engineering process must be strictly monitored to mitigate it [3]. Disag-

gregation allows engineers to break the system down into components with individual

requirements, and perhaps highlight areas where requirements creep is occurring.

Figure 1.1: Wertz’s concept of the space spiral [4]

Owen Brown and Paul Eremenko’s sources of uncertainty include technology,

environment, launch, demand, requirements, and funding, and cause system cost

and complexities to increase, which often leads to a building spiral as uncertainties

subsequently augment (Figure 1.1). One solution is to design spacecraft for these

uncertainties, rather than for requirements as is the current convention [5]. By de-

signing with uncertainties in mind, while attempting to keep cost and complexity low,

a revolutionary change in space acquisitions is possible [5].

Responsiveness is also becoming more of a necessity than a novelty. “To be

relevant today, systems must be responsive in hours or days, not months, years, or

decades...Failing to aggressively attack this fundamental problem will mean that the

US will lose its dominant position in space [4].” Major Thomas Co investigated this

2



shorter-term responsiveness in his dissertation, where he used electric propulsion (EP)

to accomplish multiple responsive maneuvers. He concluded that EP thrusting can

provide direct overflight within 1 to 2.5 days [6–8].

Launch is consistently an expensive portion of any space program, and as bud-

gets decline, costs are escalating [9]. Brown and Emerenko cite some of the ad-

vantages and disadvantages [10]. Fractionated modules can be launched on small,

responsive launch vehicles, and can reduce costs by reducing mass and volume. They

also contribute to the range of launch options, as they can be launched together as a

conventional payload or separately as secondary payloads [10].

Our space assets are under ever-increasing threats, both from adversaries and

the space environment [9]. Warfighters depend on space systems for combat sup-

port [9], and have a need for responsive space capabilities. Disaggregated systems

have the attribute of modularity, and it follows that they are flexible as pieces can be

added or exchanged at any time. Adversaries reacting to Desert Storm are increas-

ing their space capabilities [11], China is developing launch-on-demand systems, and

“the Soviets/Russians have had systems in inventory and launch-on-demand (within

hours) for over 30 years [4].” The space environment itself is getting more hazardous,

with increased spacecraft traffic, competition over the electromagnetic spectrum, and

more debris [11]. Entities must vie for a position along the crowded geosynchronous

(GEO) belt [12]. The smaller size of disaggregated systems decreases the probability

of collision and allows for easier atmospheric reentry. Based on this evidence, disag-

gregation can add resiliency to current space systems, allowing them to better survive

in these perilous conditions.

Moore’s Law says that technology is improving at an exponential rate, which

is great for most industries. But in the space industry, it is hard to take advantage

of this trend since a typical government satellite acquisition program takes many

years to implement, and by the time the satellite is launched the technology is out

of date. “A program that takes 10 years to design and build and then lives on-orbit

3



for 15 years is operating at roughly 1/4000 (0.00025) of the speed and throughout

[sic] currently available [4].” With current standard government space acquisition,

inserting new capabilities and technologies can take decades [9]. Missions must be

redefined so they can be accomplished by small spacecraft [4]. The modularity of a

disaggregated system would allow technology to be updated as quickly as a launch

could be found.

As Space and Missile Systems Center commander Lt. Gen. Ellen Pawlikowski

puts it, current systems have poor resilience and concentrated capabilities, making

them “good targets that are hard to defend [9].” If just one aspect of these systems

is incapacitated, mission capabilities are crippled [9]. Disaggregating these systems

could allow the mission to continue as planned with only minor setbacks due to loss

of a single functionality.

In light of all these challenges, disaggregation is rightly a hot topic for space

systems of the future. Brown points out that there is a need to transition from large

monolithic spacecraft with maximum reliability and lifetime to more innovative, agile,

and economically sensible architectures [13], and AFSPC commander General William

Shelton pushes for more resilience to threats in the space and cyber domains [14].

Shelton is quoted in a SpaceNews article, saying of our military space programs, “I’m

a big proponent of pushing it to commercial if we can [15].” Most recently, in a 2014

published article [16], Gen. Shelton reemphasized the need for balancing “required

capability, affordability, and resilience,” comparing the difficulty of the process to

turning the Queen Mary [16].

1.2 Problem Statement

According to the AFSPC White Paper, the potential benefits of functional dis-

aggregation may be significant but are not yet proven [11]. This thesis is an explo-

ration of the benefits versus the costs of disaggregated architectures. In his paper on

distributed satellite system optimization, Cyrus Jilla notes that “the trade space for

distributed satellite systems (DSS) can be enormous - too large to enumerate, ana-
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lyze, and compare all possible system architectures [17],” and as such we are going

to perform an analysis of a single case that may or may not be applicable to other

cases. The research uses Matlab’s genetic algorithm (GA) tool in conjunction with

Analytical Graphics, Inc. (AGI) Systems Toolkit (STK) simulations to minimize the

cost of a constellation of satellites with disaggregated imaging payloads. The cost will

be calculated by standard cost models that take into account the number of spacecraft

and sensor aperture diameter. The Matlab-STK Component Object Model (COM)

interface will be utilized via a Matlab function to generate a scenario within Matlab’s

GA calculator. The principles of disaggregation will be applied to a simulated imag-

ing constellation and the results analyzed to qualify the benefits of such methods on

that type of system.

This thesis is an extension of Major Robert Thompson’s work, which is based

on calculating global coverage with a Walker constellation. This thesis focuses on a

given target deck and spacecraft with targeted sensors, separating it from what Maj.

Thompson has already done with push-broom and whisk-broom scanning sensors.

1.3 Definitions

Disaggregation is a broad concept with many definitions depending on the spe-

cific field of interest. Maj. Gen. Thomas Taverney refers to disaggregation in the

acquisitions context as “the concept of splitting the missions into larger numbers of

smaller and more consistent missions/satellites with achievable requirements...to con-

front and reduce overall acquisition costs, and simplify acquisition rules and strate-

gies [1].” Space disaggregation is also defined by an Air Force Space Command

(AFSPC) White Paper as “the dispersion of space-based missions, functions or sen-

sors across multiple systems spanning one or more orbital plane, platform, host or

domain [11].” In this paper, disaggregation will refer to capabilities separated onto

multiple platforms (space vehicles) in a constellation or formation.

Disaggregated systems are also sometimes referred to as distributed space sys-

tems, or distributed satellite systems (DSS). “A distributed space system is defined
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as a system of multiple satellites designed to work together in a coordinated fashion

to perform a mission” (Shaw, 2000 [17]). Horst’s conference proceeding lists some

types of DSS, such as formation flight, satellite clusters, and fractionated spacecraft;

some referenced examples are TechSat21 and System F6 [18]. Another example of a

disaggregated system is the Global Positioning System (GPS). Each payload cannot

accomplish its mission individually, but all together the system is “a robust, afford-

able, and resilient architecture” that is invaluable to modern everyday life. GPS

routinely integrates new technologies, which is a novel feature of disaggregated sys-

tems. The GPS 3 system pairs a generic commercial bus with a specialized payload,

following a common tenet of disaggregation [9].

The two primary methods of disaggregation, according to Burch, are decom-

position of a monolithic system into many smaller systems, and augmentation of an

existing system by adding smaller systems [2]. The Iridium system is an example

of decomposition, and the Space Based Infra-Red System (SBIRS) utilizes a form

of augmentation, as highly elliptical orbiting (HEO) payloads can be seen as aug-

menting large GEO spacecraft [2]. Decomposition can be broken down further into

fractionation and functional disaggregation, which can both utilize multiple orbital

planes. Fractionation is decomposition of subsystems, and functional disaggregation

is decomposition of the mission. Multiple orbital planes puts some spacecraft type in

one orbit, at a particular altitude and inclination, and other spacecraft types at other

altitudes and inclinations. Augmentation usually involves hosted payloads, or adding

constellations of smaller satellites to existing constellations. All of these variations

are illustrated in Figure 1.2.

Disaggregation is often used interchangeably with its subset of fractionation, but

this is not technically correct. Brad Tousley, director of the U.S. Defense Advanced

Research Projects Agency’s (DARPA) Tactical Technology Office, gave some insight

into these concepts in an interview with Space News in May 2013. Disaggregation, as

distinguished from fractionation, is a broader concept that “entails breaking up the

mission sets of large spacecraft and dispersing them among smaller satellites [19].”
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Figure 1.2: Types of disaggregation. Each cube represents an independent space vehicle,
or module. In fractionation (a), each subsystem is broken off into its own vehicle, and the
whole system flies in a cluster with a proximity that allows necessary data and resource
sharing. In functional disaggregation (b), the mission is broken down by mission, and each
independent mission has its own vehicle. With multiple orbital planes (c), a constellation
of satellites with common missions are used in different orbits to maximize coverage and
survivability. Multiple orbital planes can be used in conjunction with other methods of
disaggregation. Hosted payloads (d) are simple missions that can be added to existing
large spacecraft. Hosted payloads disaggregate one spacecraft by aggregating with another
spacecraft.

Fractionation can be described further as “dispersing the functions of a single satellite

across several smaller platforms [19],” or “multiple subcomponents interact[ing] on or-

bit to holistically create the capability of a single monolithic satellite [11].” Brown and

Eremenko define fractionation as “the decomposition of a system into distinct mod-

ules which, once ‘assembled’ on orbit, deliver the capability of the original monolithic

system [5].” Jerry Sellers includes a comic in Understanding Space showing what a

spacecraft would look like if it was designed by just one type of engineer (Figure 1.3).

This is remarkably representative of the concept of fractionated spacecraft.

Brown and Emerenko further break down the concept of fractionation into two

categories: homogeneous fractionation, in which the modules are identical or func-

tionally similar, and heterogeneous fractionation, where each element is unique and
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Figure 1.3: Jerry Sellers’ depiction of a spacecraft as designed by a single type of engineer
[20]. This is a useful illustration when talking about fractionation.

modules may interact wirelessly [10]. According to Charlotte Mathieu, “spacecraft

fractionation transforms a large monolithic spacecraft into smaller modules,” with

homogeneous fractionation referring to a cluster of identical spacecraft. She says

that “heterogeneous fractionation divides the spacecraft into its functional elements,”

implying that reusable bus modules could be able to support various payloads [21].

Functional disaggregation, or breaking down the mission, is a slightly newer

concept. An AFSPC White Paper defines functional disaggregation as “the disper-

sion of sensors or distinct sub-missions onto separate platforms that were previously

hosted on a single system [11].” The mission is broken down into strategic and tac-

tical components, with each piece being accomplished by an individual module or

space vehicle. As an example, visualize a target tracking system, which might have

a strategic mission of global passive coverage, and a tactical mission of active target

tracking in more concentrated regions.
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Figure 1.4: Charlotte Mathieu’s illustration of the difference between traditional and
fractionated spacecraft. “Spacecraft fractionation transforms a large monolithic spacecraft
into smaller modules [22].”

Fractionated and functionally disaggregated systems could both utilize multiple

orbital planes, which is especially useful in heterogeneous systems. If an imaging

system contains two types of space vehicles, distinguished by their sizes, the smaller

spacecraft can compensate for a smaller instrument aperture diameter with a lower

altitude orbit, while the larger aperture diameter can handle the resolution decrease

that results from the higher altitude. The space vehicles in the constellation all have

the same mission, but the mixed constellation yields better survivability and coverage.

Finally, hosted payloads add a mission to an already-existing commercial or gov-

ernment spacecraft. This capability can make a complex system simpler by detaching

one component and appending it to an existing spacecraft, making use of the host

spacecraft’s orbital characteristics and subsystems.

The orbital imaging system studied in this research makes use of heterogeneous

fractionation over multiple orbital planes, as will be seen in Chapter 3. A constellation

was found to accomplish the mission in under two minutes for a Middle East target

deck, or more reasonably within 30 minutes using an Ohio target deck. Using the

approach developed in this thesis, an actual target deck can be entered into the

algorithm to design an optimal constellation.

1.4 Thesis Overview

Chapter II provides background research on the pros and cons of disaggregation,

pros and cons of various optimizers, and an overview of the STK COM interface, as
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well as a description of the Army’s space-based responsive imaging projects. Chapter

III is a detailed description of the methodology used in this research. Chapter IV pro-

vides the results of the simulation and research, and Chapter V presents conclusions

and suggests future work on this topic.
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II. Background

This chapter presents a summary of topics relevant to disaggregation research

and optimization methods. It covers the various types of disaggregation and expounds

upon its uses. Pros and cons of various optimizers are explored, and the use of the

STK-Matlab COM interface is discussed. Finally, some applications are identified

and discussed.

2.1 Concepts of Disaggregation

To fully understand disaggregation, there are some commonly-used terms that

need to be described.

Disaggregation makes use of many small spacecraft in cluster formations. These

cluster formations are not meant to be an organized formation; it simply means that

they are close enough to communicate with each other. This concept is contrasted

with the concept of the monolithic spacecraft, from which systems are disaggregated.

A monolithic spacecraft is one which does not have readily-separable modules, and

can be treated as a single, independent system.

Another concept intrinsic to disaggregation is modularity. A modular system is a

system of subsystems, where each spacecraft in the fractionated space architecture can

be thought of as a subsystem [21]. Although there are several definitions of modularity,

the term “modular” in this paper will refer to an architecture or constellation made

of independent, unique, and interchangeable spacecraft (modules) working together

toward a common objective; this paper does not discuss interchangeable subsystem

modules contained within one spacecraft.

Finally, Brown and Eremenko define a couple more uncommon terms in relation

to disaggregation. They use the term “uncertainty” in place of risk and opportunity,

where risk refers to situations leading to system degradation, and opportunity de-

scribes potential improvement in the system [5]. Larson et al. list the sources of

uncertainty as statistics, input variables, and “unknown unknowns,” or unpredictable
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events. Possible responses to uncertainty are: avoid, mitigate, transfer, or accept risk;

exploit, enhance, share, or accept opportunity [23].

Brown and Eremenko also use the term responsive space, which is “the capability

of space systems to respond rapidly to uncertainty [5].” In this paper, responsive

systems have the capability to be launched or changed in a timely manner based on

user needs and requests.

James Wertz expands on the concept of responsive space in Chapter 13 of the

New SMAD using his coined concept of “reinventing space:”

Reinventing space is using modern technology and old-fashioned drive,
determination, and some willingness to accept risk to do much more, much
faster, with fewer resources [4].

Wertz emphasizes the importance of mission diversity, or mixing large, expensive

programs with small, quick, flexible systems. The goal is to accomplish the same

mission objectives without the expenses of traditional programs. “If we can do some

entire missions, and parts of other missions, far quicker and at much lower cost, we

can expand what we can do in space, be more responsive to the needs of the end user,

and do more with fewer resources [4].”

The goal of disaggregated architectures is to improve resiliency while reducing

costs, increasing modularity, and simplifying complex systems. If this is not possible,

we will need to find a different strategy to bring about the future of space architecture.

In addition to disaggregation terms, a basic understanding of astrodynamics is

helpful in following this analysis. There are six parameters necessary to describe the

orbit of a spacecraft around Earth, known as classical orbital elements (COE). These

consist of semi-major axis (a), eccentricity (ecc), inclination (incl), right ascension of

the ascending node (RAAN), argument of perigee (ω), and true anomaly (ν). A full

explanation of these terms can be found in Appendix A.

Walker constellations are used in this simulation; these constellations were de-

veloped by J.G. Walker at the British Royal Aircraft Establishment to provide con-
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tinuous Earth coverage with a minimal number of satellites. Walker’s work concluded

that a minimum of five satellites are necessary for persistent coverage [4]. Walker

constellations are defined by the number of planes, the number of satellites per plane,

and an interplane spacing or true anomaly phasing value [24]. All satellites in the

Walker constellation have the same altitude and inclination as the seed satellite, and

other orbital parameters are defined by the specified Walker parameters. Examples

of existing Walker constellations are GPS and Iridium.

2.2 Disaggregated Systems

There has been much buzz about disaggregation of space systems as of late.

A paradigm shift to these disaggregated systems seems to be in order. An AFSPC

White Paper claims that US reliance on space was a glaring vulnerability after Desert

Storm, leading to international progress in space tactics. Not to mention increased

debris in the space environment, and fiscal challenges exacerbating already steep space

system costs [11]. The industry would benefit financially and technologically from a

transition to disaggregated systems, although this is not to say that such a radical

change would be easy or fast.

However, the excitement should be moderated; not all systems are guaranteed

to benefit in the same ways from disaggregation. One trade-off is similarity of compo-

nents [2]: would the system benefit more from redundancy (identical components) or

dispersed capability (unique components), or something in between? Engineers must

also decide whether it is more cost-effective to forego disaggregation altogether and

instead revert to the traditional approach to space system design; that decision may

depend on system requirements as well as the number of stake holders. If the system

has only a few simple requirements and is not likely to change due to the demands of

various competing entities, the benefits of disaggregation could be outweighed by the

labor and research needed to implement such strategies. Former National Security

Council space policy director Peter Marquez is paraphrased in Laura Delgado’s Space

Policy Online article: “The goal ought to be, he said, not to adopt disaggregation in
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all systems, since ‘large systems have their place,’ but instead to seek greater diversifi-

cation.” In the same article, Boeing Director of Missions and Programs of Commercial

Satellite Services William P. (Bill) Reiner is said to support “a mix of approaches,

with the end goal to find ways to be ‘more responsive, resilient and cost-effective.’”

Again in the same article, Lockheed Martin vice president of strategic planning Marc

Berkowitz is paraphrased, “the community should not rule out big systems, but adopt

whatever size best addresses the specific mission. ...the assertion that disaggregation

will lead to cost savings should be validated [25].” As will be discussed, System F6

was a project designed to look into the viability of disaggregation, but was cancelled

because it did not have a sustainable mission [19]. Instead of designing missions to

study disaggregation, disaggregation should be applied to existing mission needs, and

the results analyzed to determine the benefits that could be realized.

2.2.1 Previous and Current Work. A start to disaggregation is modular-

ity. Competition has driven the commercial space market to “maximize the use of

common bus components and modular structures, providing a core capability that

enables them to configure, rather than redesign, a satellite to meet its specific mission

requirements.” Many modular designs exist and are used to facilitate production;

even the Air Force Institute of Technology’s (AFIT) space vehicle design course uti-

lizes modular bus components so that students can design and build a payload to

function with those bus components in only 30 weeks.

Modularity is only one asset of fractionated systems. According to AFSPC,

the advantages to fractionation are single subcomponent replacement, reduced pay-

load mass, lower integration costs, and higher tolerance of risk [11]. DARPA began

investigating fractionation concepts with their Future, Fast, Flexible, Fractionated

Free-flying Spacecraft United by Information Exchange (System F6) program, which

was officially cancelled in May 2013 [19]. A rendition of this concept is shown in Figure

2.1. System F6 was supposed to demonstrate the benefits of disaggregation; separated

spacecraft were meant to exchange data. Brad Tousley, director of DARPA’s Tactical
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Technology Office, emphasized the cancellation did not imply a lack of interest into the

broader concept of disaggregation; he believes the program would have faired better

with a more distinct mission rather than serving as a technology demonstration [19].

Figure 2.1: DARPA’s System F6, which was supposed to demonstrate the benefits of
disaggregation. It was cancelled in May 2013 [22].

DARPA is working on other programs that utilize disaggregation, such as Phoenix

and SeeMe. Phoenix is supposed to demonstrate life-extension of GEO satellites by

replacing spent components or fuel, while SeeMe is similar to the Army’s many con-

cepts of responsive imaging spacecraft that can deliver data to handheld devices in

the field [19]. According to a recent Space News article, SeeMe was recommended

for termination in the 2014 defense spending bill [26]. The fiscal environment has

become increasingly more restrictive over the past few years, and programs must be

extremely vital to survive to launch and on-orbit operations. The goal of this research

is to establish a method for efficient constellation design in order to strengthen future

project proposals and prevent cancellation.
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Mass 20 kg (dry) / 80 kg (wet)
Minimum working elevation angle 20 degrees
Minimum field of view at nadir 0.8 km x 0.8 km
Swath width at min / max altitude 500 km / 2000 km
Orbital inclination 3 to 5 degrees higher than latitude of the target

Table 2.1: NanoEye Specifications [29]

Cost $1M per spacecraft in production mode
Mass 18 kg (dry) / 25 kg (wet)
Altitude 500 km
Focal length 10 m
Field of view 5.8 x 3.8 km
GSD 1.5 m at nadir
Downlink rate 1 Mbs
Tasking-to-product cycle 10 minutes

Table 2.2: Kestrel Eye Specifications [30–32]

The Army’s imaging programs include Kestrel Eye and NanoEye. These pro-

grams are solutions for providing the warfighter real-time imagery of areas of opera-

tion [27]. The specifications for NanoEye are taken from Captain Steven Ingraham’s

thesis and are shown in Table 2.1. NanoEye’s fact sheet from the US Army Space and

Missile Defense Command/Army Forces Strategic Command claims that “NanoEye is

a low-cost microsatellite providing responsive, tactical imaging from Low Earth Orbit

to the ground component Warfighter [28].” The program emphasizes low cost, and

aims to provide desired images within minutes to the ground forces that are directly

tasking the satellites. NanoEye will use on-board propulsion to get better resolution

images from lower altitudes [28].

Kestrel Eye is another “small, low cost, visible imagery satellite demonstrator

that offers the tactical-level ground component Warfighter real-time imagery [30].”

Like NanoEye, Kestrel Eye will be directly tasked by the ground forces, will provide

desired imagery within about 10 minutes, and is meant to extend the Unmanned

Aerial Vehicle paradigm into space. Kestrel Eye aims to be small in size but great in

number, and cost around $1 million per spacecraft in production mode [30]. Kestrel

Eye’s specifications are listed in Table 2.2 on page 16 and are used as a reference

for this research. A basic concept of operations for these programs can be found in
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Chapter 3, as this research attempts to recreate and analyze a similar concept.

The U.S. Air Force is currently looking at revamping GPS plans. Warren Fer-

ster’s SpaceNews article details some of the nine options under examination, from

a constellation of small satellites called NavSats or augmentation by geostationary

satellites to continuing with the expensive but low-risk Lockheed Martin GPS 3 con-

stellation [33]. The NavSats may sound like a good deal, but involve a high level of

cost, performance, reliability, and lifetime risk due to low levels of technological ma-

turity. “The Air Force late last year awarded contracts...to three companies - Boeing,

ITT Exelis and Surrey Satellite Technology U.S. - to study low-cost satellites to aug-

ment the GPS constellation [33].” This thesis furthers the Air Force’s intentions by

studying cost-effective constellations that can be used to augment existing satellites

and constellations as needs develop and change.

The European Space Agency is working on FUEGOSAT, a 12-satellite LEO fire

observation mission. The mission involves three satellites, each on a different orbital

plane. The FUEGOSAT payload is a multi-spectral push-broom radiometer [34]. The

conclusion of this thesis will be pertinent to such missions, as the number of satellites

needed in the constellation, and so the overall mission cost, may be reduced.

Here at AFIT, Major Robert Thompson has taken interest in disaggregation.

Starting from a model in Excel, he created the original versions of the Sensor performance.m

and cost.m Matlab code (see Appendix D). By adapting those pieces of code, this

thesis will be an extension of his work, which he will continue as he completes his

doctorate.

A couple of theses from AFIT are also related to this topic. A thesis on Air

Force Research Laboratory’s (AFRL) TACSAT-2 investigates the utility of matched

inclination orbits for tactical users and logistics impacts for the Iraqi theater [35].

The specifications for TACSAT are listed in Table 2.3. This thesis takes their inves-

tigation a step further by looking at varying all orbital parameters for a constellation
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Altitude 350 km
Eccentricity 0
Inclination Latitude of target
Mass 352 kg
Slew rate 0.5 deg/sec
Target Iraqi theater

Table 2.3: TACSAT Specifications [35]

monitoring the Iraqi theater. The TACSAT paper found a revisit time of 52 minutes

with 10 satellites and a revisit time of 22 minutes for 20 satellites.

Captain Steven Ingraham’s thesis uses maneuvering satellites to cover Dayton,

OH [29], whereas this thesis assumes the satellites are in constant orbits and are

incapable of tactically maneuvering. But Capt. Ingraham makes the general assertion

that for maximum coverage, the inclination should be the sum of the target latitude

and the Earth central angle of the spacecraft. His equations are:

sin ρ =
RE

RE + h

sin ηmax = sin ρ cos εmin

λmax =
π

2
− εmin − ηmax

Incloptimal = λmax + λtarget (2.1)

(2.2)

where RE is the radius of the Earth (6378 km), h is the spacecraft altitude, ρ is the

angle from the spacecraft to the local horizon, η is the limits within minimum elevation

angle, ε is the minimum elevation angle, and λmax is the Earth central angle [29], as

illustrated in Figure 2.2 on page 19. λtarget is the latitude of the target. This model

will be analyzed further in Chapter 4.

2.2.2 Benefits of Disaggregation. Burch states that new systems should aim

to be less complex than previously designed systems, and should allow for system

growth [2]. Disaggregated systems accomplish this goal; they take less development
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Figure 2.2: Spacecraft angular geometry for optimal inclination calculation [29]

time, have lower cost, and are more flexible than their monolithic counterparts. Dis-

aggregation can mean improvements in schedule, cost, and performance of a space

program.

2.2.2.1 Schedule. Modular structures allow engineers to “configure,

rather than redesign, a satellite to meet its specific mission requirements [9].” Reusing

existing modules and not starting from scratch can significantly reduce the temporal

length of a program. And since fractionated system modules are not highly intercon-

nected, subsystems can be developed in parallel, further saving production time on

the overall system [21]. A system developed in this way is more flexible, and could

adapt to fluid requirements.

Improved schedule not only means faster production of capabilities, but it also

allows a refresh of on-orbit technologies that often become obsolete before they are

launched [11]. Since “only what is needed is developed, manufactured, and launched

[36],” space systems are more efficient and can concentrate on meeting specific re-

quirements.
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2.2.2.2 Cost. A common reason for cost increase is the difficulty of

integrating multiple payloads onto a single bus, which additionally can cause schedule

challenges [11]. Integration is a difficult part of space system design, especially for

more complex systems; there are many physical and non-physical interfaces that must

be worked through, and getting each component to talk to the others is a challenge.

Additionally, all the necessary components must fit into as small a volume as possible.

Brown and Eremenko point out that interconnected modules with only a wireless

interface are much simpler to integrate than a large spacecraft with technical and

programmatic connections, which includes physical interactions and interdependence

regarding readiness [10].

An important element in system cost can be attitude control requirements.

Some components have stricter attitude control requirements while others have almost

no attitude control requirements. Attitude determination and control (ADC) systems

can be significantly downsized by breaking up the spacecraft [10]. Each module could

have its own ADC system, with only as much accuracy as necessary. Some modules

may not even need to include ADC at all.

Lifetime costs are another cost driver of any space system. The technology

obsolescence of monolithic spacecraft increases recurring costs over time, as well as

production costs as the system must be redesigned to incorporate new components [2].

Redesign may also be necessary as some components expire faster than others, and

radiation can shorten the on-orbit lifetime of spacecraft operating in more hostile

orbital environments. “Hardware with similar design lifetimes can be aggregated on

modules thus creating some short- and some long-lived modules [10].” Space systems

would no longer be limited to the lifetime of their shortest-lived component. This

idea of grouping by lifetime may also lead to a precedent for disaggregated system

design.

Security is an important consideration, especially on intelligence payloads. If

only one module has strict security requirements, the other payload modules can be
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developed for a much lower price [10]. Security is another aspect to consider when

splitting up capabilities.

Launching a mission using multiple launch opportunities leads to fewer launch

constraints and less financial risk [21]. Multiple launches can be thought of as a kind

of insurance, which is a valuable commodity in the space industry. In fact, in a cost-

benefit analysis of fractionated architectures, Brown et al. points out that “reducing

cost risk by architectural means, such as fractionation, is effectively equivalent to self-

insuring the system during its launch and operations phases.” Figure 2.3 is taken

from the Department of Transportation by Brown, and shows industry-wide insurance

rates for launch plus one year of on-orbit operations (blue) and annual operations

(red) costs [13]. Although more launches would be inherently more expensive, using

separate launch vehicles distributes risk and reduces chances of total mission failure,

and makes the fruits of the financial investment more valuable.

Burch also alludes to the ever-important aspect of cost certainty [2]. Once the

cost is calculated, that is not the end; unexpected circumstances often arise and push

the price even higher. “As program timelines lengthen, these fixed costs increase

proportionally,” especially with bigger and more complex systems [2]. The old adage,

“time is money,” holds very true in the space industry. It is prudent to use disag-

gregation as a strategy to decrease the time of production, and therefore increase the

cost certainty of the project.

The caveat to these ideas is that the greater number of launches required im-

poses some complications. For systems such as MILSATCOM, as discussed by Burch,

U.S. space policy restricts potential launch vehicles to those supplied by the U.S. [2].

However, the growth of U.S. commercial space launch suppliers like SpaceX will con-

ceivably mitigate this issue.

Brown’s research shows that “the overall cost-benefit proposition may close

in the fractionated case and fail to close in the monolithic case [13].” The actual

results can be seen in Figure 2.4 on page 23. This means that, in the long run,
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Figure 2.3: Average Launch Insurance Rates [37]

fractionation turns out to be more cost effective. Pawlikowski notes that “the cost

of higher quantities are offset by savings from hosting, continuous production lines,

commercial bus procurements, smaller and less-complex satellites, more-frequent and

lower-cost launch, and a more tailored approach to mission assurance [9].”

2.2.2.3 Performance. This section will show that modular architec-

tures are more flexible, responsive, and survivable than traditional monolithic space-

craft [21], against both hostile adversaries and environmental threats [11].

Disaggregated architectures are flexible, decreasing program risk. In her Space

Policy Online article, Delgado states that Bill Reiner “emphasized disaggregation as

an opportunity for more flexibility as military missions change [25].” A modular

system, as discussed before, allows modules to be developed with different lifetimes

[21]. These systems are less complex, which may encourage sponsors to accept more

risk [11], allowing missions more capability and overall value. In fact, Burch [2]

references the exponential relationship between costs and complexity, and asserts

that disaggregated systems are able to remain below the knee of the complexity curve.

Disaggregated systems present stakeholders with a wider array of options throughout
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Figure 2.4: Monolithic Spacecraft versus Fractionated Architecture Cost-benefit Analy-
sis [13]
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the system lifetime, which in essence is the definition of flexibility [10]. Disaggregated

systems are also more adaptable because they are inherently redundant; a capability

lost on one module might be replaced by the same capability on another module [10].

Wertz provides an example of the flexibility provided by disaggregated systems:

If we are launching 5 to 10 low cost observation satellites per year, then
there is relatively little risk associated with introducing a new sensor tech-
nology into the satellite stream. If, for any reason, it proves unsuccessful,
there are still a number of on-orbit satellites using the prior sensor tech-
nology that are still providing data [4].

Disaggregated systems are responsive. Xin Liu et al. notes that complex systems

are riddled with uncertainties that are difficult to control and measure [38]. The two

main uncertainties cited are user requests and weather. User needs are unpredictable

and may arise unexpectedly, and weather is inherently unpredictable [38]; even with

modern weather prediction technology forecasts are often wrong. Therefore, respon-

sive systems are necessary to be flexible in this unstable kind of environment. As

demands change, disaggregated systems can be incrementally upgraded without loss

of capability in the meanwhile and without long wait times [13]. Systems are made

ever more responsive as there are multiple launch options. Modules can be launched

in pairs or groups on conventional launch vehicles, launched as secondary payloads, or

launched individually on responsive vehicles such as those provided by SpaceX [10].

Whereas monolithic systems are put into place and subject to fluctuating threats,

disaggregated systems are able to be changed in a much shorter amount of time in

response to vulnerabilities [2].

Disaggregated systems are survivable. Capabilities lost by a single spacecraft

take years to replace, at a high cost, while the loss of one of many small spacecraft may

not be significantly detrimental to the mission; the small spacecraft is relatively easy

to replace in a short time and the replacement may even have greater capability than

the lost asset [4]. As spelled out by AFSPC, “the goal is to make attack against our

systems as difficult as possible, while increasing the possibility of capability survival

in the face of hostile action [11].” Disaggregated architectures have a target-spreading

24



characteristic, or “spatial distribution of components over a larger volume [10].” By

virtue of this unique attribute, adversaries can less easily determine where and when

to strike, and are less certain of success in their attack [11]. Autonomous tracking

systems may also be baffled by autonomously changing geometries that disaggregated

systems make possible [10]. The potential impact on the warfighter is mitigated and

the impact of a satellite lost to mishap or hostile action is reduced by transitioning

from a single satellite asset to more platforms and dispersed capabilities [9]. The

reduced complexity of these systems significantly decreases the chances of experienc-

ing catastrophic failures such as those had by Apollo, Challenger, Chernobyl, and

Columbia [10]. Wertz argues this as well:

If critical US military assets are destroyed...they cannot be replaced...they
also become inviting targets... However, if some subset of their capability
can be replaced within hours or days by inexpensive smallsats, they be-
come a less valuable target and, because of low cost and rapid replacement,
the back-up smallsats are also uninvinting targets [4].

2.2.2.4 Industry. During the design of the space Shuttle, “there was

no continuous production process that would provide for changes, upgrades, mainte-

nance, and incorporation of new technology [4],” which is something that disaggre-

gated architectures can provide. Because of the post-launch opportunities for changes,

disaggregation provides constant adaptability and allows industry to remain on the

cutting edge of technology [11]. The newest equipment can be inserted onto older

mission platforms, and experimented with or utilized immediately. Technology devel-

opment and demonstration can be accomplished in parallel with ongoing operational

programs [2], allowing more flexibility in technology advancement.

Disaggregation also encourages healthy competition, as payloads can be pro-

vided by different contractor teams. In this way, workloads are also distributed [11],

leading to faster production and more highly-capable systems.

2.2.3 Challenges to Disaggregation. The biggest challenge to disaggrega-

tion may be integration, especially with multiple contractors having to interface their
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systems with each other [11]. During integration, engineers must attempt to identify

and solve unforeseen problems brought about by “the multitude of unknowns, un-

certainties, and ill-functioning parts,” and unforeseen consequences stemming from

assumptions made in the design phase [23]. Although integration of disaggregated

systems is easier than that of monolithic systems in a physical sense, issues need to

be worked in the interfaces between modules. As modules are separated by distance in

space, a wireless link must be established to enable communications between all sub-

systems. And with different contractors working on different pieces, coordination is

essential to successful integration of the entire disaggregated system. And, of course,

unforeseeable problems may arise as a result of emergence. Emergence refers to un-

intended consequences, good or bad, that arise during the integration of a system.

Burch suggests a centralized mission planning element and new or expanded plan-

ning tools to keep track of the capabilities of each separated asset of the system [2].

Currently, interface standards are critical, and will become even more so with the

advancement of disaggregation.

Another challenge is the increase in orbital debris. Using more satellites will

create more scattered pieces of debris when the mission goes out of operation. Mea-

sures will need to be taken to ensure the system components are able to comply with

the 25-year deorbit regulation practiced by NASA and the Department of Defense

under the US National Space Policy; each module will need to either re-enter and

burn up or be propelled out to a graveyard orbit. A recent debris-control report

states that out of 38 low-orbiting satellites, 34 will not reenter within the required

25 years [39]. Thought may need to be put into the amount of spacecraft that are

in the GEO graveyard orbit, and how to avoid overcrowding down the line. How-

ever, Wertz counter-argues this point, citing the number of tracked objects in LEO:

900 spacecraft in an environment containing 500,000 debris particles greater than one

centimeter. Small spacecraft also have a small cross-section, resulting in a low proba-

bility of collision. LEO is “self-cleaning,” since debris succumbs to drag and reenters
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relatively quickly [4]. There is also a lot of current research in propulsion that may

help address this issue.

Along with debris, there will also be greater use of the communications sprectra,

increasing potential interference. However, this may also carry some benefits, as

spatial isolation in the GEO belt “will inherently provide the opportunity for greater

frequency reuse,” and single-frequency systems are easier to plan and operate than

multi-band systems [2].

Finally, Wertz writes that funding these missions may pose a challenge, since

there are fewer job opportunities created by smallsat missions. Funding depends on

public relations, and “small successes are not as newsworthy as expensive failures [4].”

And despite savings in other areas and better insurance against risk, the raw cost of

more launches is greater.

2.2.4 Unknowns. The most difficult part of any program is the “unknown

unknowns.” These are unpredictable events that cannot be accounted for, and do not

show up until it is too late. In cost-risk analysis, using a confidence level higher than

50 percent is “prudent because analysis, at best, still excludes unknown unknowns

[23].” There are a few aspects of disaggregation that have unknown or difficult to

predict effects. These effects could result in either difficulty or improvement in both

production and operations.

2.2.4.1 Production. Affordability was brought about in the automo-

tive and computer industries by commoditization [10]. Similarly, disaggregation could

make space more affordable. Widely-implemented fractionation may conceivably lead

to assembly-line production of common bus components. These “cookie-cutter” bus

modules could be used by multiple payloads with similar requirements.

The government’s top-down approach to design drives unique requirements that

demand a customized bus [9]. These specialized programs will need to adapt to work

with less customizable, but more capable, standard bus components.
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2.2.4.2 Operations. The reliability of smallsats decreases with respect

to their monolithic counterparts because of cheaper production methods and greater

risk. They are generally less reliable because they have less redundancy and require

less rigorous testing. However, smallsats are more reliable than their monolithic

counterparts in terms of simpler designs and more personal responsibility taken by

engineers [4]. A key to disaggregation will be to get customers to accept less reliability

in exchange for more versatility.

The complexity of many modules flying in a cluster formation may dictate more

autonomy in fractionated systems [10], which could be both a blessing and a curse.

Autonomous systems require fewer personnel to operate, are arguably more efficient,

and are overall more convenient as less resources must be expended in the long run.

However, they require more effort in the design phases. Autonomy may or may not

be worth the extra effort for a space program lasting only a year or two.

Another change in operations would occur if ground segments were thought

of as simply another node in the system [10]. The whole paradigm of space systems

would change by considering all mission components to be modules of a single colossal

disaggregated architecture. This would bring about better continuity in the system,

but also requires more pieces to be integrated, and exacerbates the consequences of

emergence. Attempting this would require acute attention to detail throughout the

decomposition and integration processes.

Burch mentions that modern networks, such as the Internet, use distributed

architectures with a high number of nodes. “Network utility increases...proportional

to the number of nodes [2],” meaning that a desired trait of future highly developed

distributed systems will be high number of nodes.

As a final note on unknowns, Wertz states that “because we will likely never

build both a low-cost smallsat and a traditional satellite with the identical mission

objectives, there is no way to prove conclusively that cost reduction is real [4].”
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2.2.5 Using Disaggregation. Disaggregation has many potential benefits,

and only a few foreseeable shortcomings. The challenges presented by disaggregation

are manageable, though the biggest challenge seems to be starting a movement in the

space industry toward its implementation including increasing the general tolerance

of risk and lower reliability. It is worth looking into ways to separate spacecraft

into modules, such as by life expectancies or classification requirements. A summary

of the characteristics of disaggregated spacecraft versus monolithic spacecraft, from

Charlotte Mathieu, is shown in Figure 2.5.

Figure 2.5: Traditional versus Fractionated Spacecraft Paradigm [40]

Establishing a method to allocate mission capabilities is a daunting task. Each

component will have its own requirements, must remain unique relative to other com-

ponents, and must interface with the full system [2]. Josh Hartman, CEO of the

Horizons Strategy Group and principal of the Center for Strategic Space Studies

(CS3), is cited in a Space Policy Online article, saying that we should examine each

mission area to determine how best to disaggregate the system [25]. Hartman advo-
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cates taking small steps toward disaggregation, starting with complementing existing

architectures. He also hopes to see not just studies and research, but “tangible results

that will help the community understand how best to adopt disaggregation to meet

evolving needs [25].”

Convincing customers to accept the risk of lower reliability is another problem.

The benefits wrought from disaggregated systems in cost savings and efficiency must

clearly outweigh the potential losses. The best way to accomplish this is to design

a program that demonstrates the merits of disaggregation and that is simple enough

to not fail. Over time, more complex disaggregated systems can be attempted, as

engineers grow accustomed to disaggregation concepts.

Wertz agrees that care must be taken in determining whether disaggregation is

appropriate to a program. There are some tasks that simply cannot be accomplished

by smallsats, and depending on the mission the cost of research and development of

a smallsat system might exceed the cost of simply using a traditional architecture to

accomplish objectives. Mission diversity is important in the space industry; “having

the right mix of large and small satellite programs is a major step toward becoming

both more efficient and more capable [4].”

2.3 Optimizers

The form of a typical optimization problem is applicable to all problems, re-

gardless of complexity.

Minimize a cost function:

f(x) = f(x1, x2, ..., xn)

Subject to the p equality constraints:

hj(x) = hj(x1, x2, ..., xn) = 0; j = 1 to p
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and the m inequality constraints:

gi(x) = gi(x1, x2, ..., xn) ≤ 0; i = 1 to m (2.3)

The solution is a vector of design variables, x = (x1, x2, ..., xn), that meets all

the criteria [41]. As optimization problems become more complex, the complexity of

the cost function and constraint equations increase, but the basic form remains the

same.

Our problem in this research is to minimize the cost of a distributed constellation

of satellites. Of course, a decision must be made regarding what type of optimization

routine to use that best fits our problem needs. According to Jilla, “distributed satel-

lite system conceptual design problems are combinatorial nonlinear problems with

nonconvex trade spaces. ...as a result of the problem structure, heuristic techniques

work best on DSS conceptual design optimization problems [17].” Single and multi-

objective optimization methods both have their uses [17], but for now in our problem

we simplify all criteria down to one objective: target coverage.

Still, Liu et al. points out that with current approaches to optimization of

complex systems, the focus is on design alternatives rather than the system as a

whole, resulting in a less-than-optimal outcome. Keeping that in mind, it is necessary

to determine an approach that optimizes the whole system, remembering to include

all the significant pieces in the model [38]. Future work will include adding complexity

to make the model developed in this research more representative of actual systems.

Another issue with complex system optimization that includes many parameters

is that the number of possible combinations of design parameters is nearly infinite.

Time and money limit the number of combinations we can try in a model, and so it

is useful to narrow down the experiment to typical parameters using such methods as

design of experiments (DOE) [38].

31



Liu et al.’s journal article asserts that a combination of genetic algorithm (GA)

for global search and improved general pattern search (IGPS) for local search would

provide a high-quality, high-efficiency method for optimization of an earth observation

satellite system, since “IGPS can help GA getting [sic] out of local optimum [38].”

In this research, genetic algorithms alone are used to optimize the problem. The

following sections detail viable alternatives, and weigh their pros and cons against

those of genetic algorithms, emphasizing the single-objective aspects of each method.

2.3.1 Parallel Systems. Liu et al. discusses parallel systems in their article

on Earth observation satellite optimization [38]. The idea of parallel systems is to

improve both a real system and a model of that real system through interactions

between the two. The model can be improved by comparing results to the real sys-

tem, and the real system is improved as weak areas are exposed through the model’s

evaluation. The models can be mathematical equations or virtual simulations. Ex-

periments that use these models take into account all relevant system factors, both

internal and external to the system, and its environment [38]. It is worth noting that

these models may lose some of the unpredictability inherent in the real world, and

can never be a perfect replica of the real system.

In the case of a space system, the “real” system is out of reach (in space) and

so can be represented by ground station data for experimentation purposes [38]. This

kind of data is what we will use to evaluate and improve our models.

2.3.2 Genetic Algorithms. An understanding of genetic algorithms is essen-

tial to this work, since this is the optimization algorithm used throughout. Genetic

algorithms are meant to simulate biological evolution and Charles Darwin’s theory of

natural selection [41, 42]. Just like in nature, this process should theoretically yield

the best results and shed the worst results in real-world problems that involve many

variables and unpredictable situations. Some common terms are taken from Arora’s

textbook, Introduction to Optimum Design [41], and are summarized in Table 2.4:

32



Population Current design vectors being tried
Population size Number of designs per generation
Generation Solutions for designs in one population
Iteration One calculation within a generation
Tolerance Sensitivity of the cost function
Chromosome Design point
Gene Value of a design variable

Table 2.4: GA Definitions [41]

Population. The set of design points at the current iteration, representing a

group of designs as potential solution points. The population size is the number of

designs in a population.

Generation. A calculation in the genetic algorithm, having a population of

a given size (population size) that is manipulated to find the best function value.

This may consist of multiple iterations, which are defined by specific values of design

variables.

Tolerance. The smallest change in value that is considered significant. A func-

tion tolerance refers to the smallest change in the cost function between generations,

and a constraint tolerance refers to the greatest constraint violation that is acceptable.

Chromosome. A synonym in genetic algorithms for a design point. This design

can be feasible or infeasible, and contains values for all the design variables of the

system.

Gene. A scalar, valued component of the design vector (the value of a particular

design variable).

There are three parts to most function optimization problems, including genetic

algorithms. These are the objective function, the variables, and the constraints. The

objective function represents the value we want to minimize (or maximize). The

variables represent resources or other factors affecting the objective function. The

constraints restrict the solution vector to plausible values of the variables [42].

The first step in solving any problem is representing the problem. In genetic

algorithms, this is done through encoding. Encoding techniques listed by Dr. Te-
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jas Patalia include binary encoding, permutation encoding, value encoding, and tree

encoding; the technique used will be problem-dependent. The process of encoding

yields strings of values (the chromosomes) that represent some characteristic of the

problem, and is the most difficult part of setting up the genetic algorithm [42].

The objective function in genetic algorithms is known as the fitness function,

and it “defines the relative importance of a design [41].” The fitness function is used

to select chromosomes, and is the judge of which values are passed along and which

values are thrown out [42].

“The basic idea of a genetic algorithm is to generate a new set of designs

(population) from the current set such that the average fitness of the population

is improved [41].” Genetic algorithms have three processes that are iterated upon to

achieve this. Reproduction, or selection, copies “good” chromosomes and uses them

to replace “bad” chromosomes, keeping the population size constant. There are many

methods of reproduction, which we will not detail in this paper [42]. Crossover is the

next process, during which a pair of randomly selected “mating strings” exchange a

few genes [41,42]. The third process is mutation, which can be thought of as a random

bit flip that can prevent premature loss of genetic material [41]. A genetic algorithm

flowchart is shown in Figure 2.6.

Genetic operators like crossover and mutation make GAs unique from other evo-

lutionary computation techniques. Because of the chromosomes sharing information

with each other, the entire population moves as a group toward one optimal area [43].

The genetic operators allows the GA to mutate (just like in natural selection).

Patalia concludes that genetic algorithms are more reliable, stronger, and more

robust than any other traditional heuristic method for function optimization [42].

However, genetic algorithms have a couple disadvantages, such as requiring massive

calculations and no guarantee of finding a global solution. These may be overcome by

using parallel computers, multiple runs of the algorithm, and longer run times [41].

All in all, GA seem to be an effective optimization method for the problem at hand.
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Figure 2.6: GA Flowchart [42]. The stopping condition for GAs can be a desired max-
imum number of generations as shown here, but could also be given a function tolerance
value. If the cost does not change by more than the function tolerance value between gen-
erations, the GA will be considered finished. The GA used in this work utilizes a maximum
of 50 generations, as well as a cost function tolerance of $10,000.

2.3.3 Particle Swarm Optimization. Particle swarm optimization (PSO)

uses a population, referred to as a swarm, made up of individual members, or particles,

to search for the optimal solution to a function. Leaders are used to guide the search,

and each particle is assigned a velocity in a particular direction. It simulates a flock

of birds looking for food [44]. Below are some common terms from Margarita Reyes-

Sierra and Carlos Coello Coello [44], and are summarized in Table 2.5:

Swarm. Population of the algorithm.
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Swarm Algorithm population
Particle Member of swarm; potential solution
Leader Particle that guides others toward better solutions
Velocity vector Direction of improvement
Inertia weight Impact of previous velocities on current velocity
Learning factor Attraction of a particle toward success

Table 2.5: PSO Definitions [44]

Particle. Individual member of swarm, representing a potential solution to the

problem being solved. The position of a particle is determined by the solution it

currently represents.

Leader. Particle that is used to guide another particle towards better regions of

the search space.

Velocity (vector). This vector drives the optimization process by determining

the direction in which a particle needs to “fly” to improve its current position.

Inertia weight. Controls the impact of the previous history of velocities on the

current velocity of a given particle.

Learning factor. Represents the attraction that a particle has toward either its

own success or that of its neighbors.

In PSO, “changes to the positions of the particles within the search space are

based on the social-psychological tendency of individuals to emulate the success of

other individuals [44].” Some merits of PSO over GA are found in Arora.

[PSO] has fewer algorithmic parameters to specify compared to GAs. It
does not use any of the GAs’ evolutionary operators such as crossover and
mutation. Also, unlike GAs, the algorithm does not require binary number
encoding or decoding and thus is easier to implement on the computer.
PSO has been successfully applied to many classes of problems... [41]

Reyes-Sierra et al. also highlights some of the differences between PSO and other

evolutionary algorithms. Where GA uses three mechanisms (see section 2.3.2), PSO

uses only two. There is no explicit selection function, and no offspring generation.

PSO uses leaders to guide the search, and has an operator that gives particles a
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velocity and direction. “Changes to the position of particles...are based on the social-

psychological tendency of individuals to emulate the success of other individuals [44].”

An algorithm for PSO is depicted in Figure 2.7.

Figure 2.7: PSO Algorithm [44]

The downside to PSO is that it, like GA, may prematurely converge on a non-

optimal solution. It is not guaranteed to find an optimum from an arbitrary initial

state [44].

GAs and PSOs are the two most well-known heuristic optimization methods.

Other methods include simulated annealing, tabu search, and threshold accepting.

Because this is a nonlinear problem, there is no deterministic solution, and because

the problem is discontinuous, there is no way to prove a solution is a global optimum.

A direct search method is necessary, and no initial guess is provided. This thesis, and

Maj. Thompson’s work, make use of genetic algorithms, which suit all the needs of

the problem at hand.

2.4 STK-Matlab Interface

By creating a Matlab script that generates a scenario and objects in STK auto-

matically, some tedious tasks can be consolidated into loops, saving time for the user.
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Anything that can be done in STK can be accomplished via a Matlab command. The

hard part is figuring out how the commands work, since this is not well-documented.

A Google search yields a few sparse examples of code, and the documentation in STK’s

programming help is written for languages such as C rather than Matlab. Navy LT

James Sales created an STK library script in Matlab, which has been quite useful,

and which Maj. Thompson and I have added to in our efforts to create a scenario

for small and large satellite constellations. Our use of and amendment to the STK

library script also aims at completing some of the future work mentioned in LT Sales’

thesis [45].

2.5 Optics

A minimal understanding of optics is the last necessary piece of information

for this problem. The algorithm developed during this research uses a constraint

that the target must be visible according to the National Imagery Interpretability

Rating Scale (NIIRS) level 3, which John Irvine’s overview of NIIRS [46] qualifies

as follows: Identify the wing configuration (e.g., straight, swept, delta) of all

large aircraft Identify radar and guidance areas at a SAM site by the configuration,

mounds, and presence of concrete aprons Detect a helipad by the configuration and

markings Detect the presence/absence of support vehicles at a mobile missile base

Detect trains or strings of standard rolling stock on railroad tracks (not individual

cars)

The equation for determining the NIIRS level of a target, and other variables

that need to be determined, are described in Chapter 3.

One more important value to optics is the f-number, which is simply the ratio

of the focal length to the diameter. As a point of reference, the telescope on Landsat

7 has an f-number of 6.0 [47].
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2.6 Applications

Disaggregation is applicable to many types of systems, provided the concept

is applied in an appropriate manner. In particular, Earth observation payloads that

require maximum Earth coverage could benefit from the effects of disaggregation.

As reported in a recent article by Debra Werner in the summer of 2013, the Visible

Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting

Partnership weather and climate satellite detected rising temperatures in Japan’s

Mount Sakurajima, warning operators of impending volcanic activity 14 hours before

its eruption near Kagoshima City. Although it is unusual to catch such an event on a

single instrument, this event highlighted the possibility of using such thermal imagery

to predict volcanic activity and other environmental disasters. But William Straka

cautioned, “If you rely on one source of information too much, you end up with a case

of false detection [48].” It would be necessary to implement a whole system-of-systems

dedicated to the volcano forecasting mission.

Similar to volcano forecasting is weather prediction. Weather satellites have

many sensors, and global coverage is necessary to get the full picture on impending

weather in even a small region. The Joint Polar Satellite System (JPSS) is to be the

follow-on to the National Oceanic and Atmospheric Administration’s (NOAA) Polar-

orbiting Operational Environmental Satellites (POES), to provide global monitoring

capability for the United States. Its concept of operations can be seen in Figure 2.8.

JPSS will utilize the Common Ground System (CGS) that is already in use by many

international weather and environmental sensing missions [49]. This system is under

threat of being delayed because of withheld funding. If the delay happens, there will

be an observational data gap in late 2016 to early 2017 as POES expires and JPSS

awaits operations [50].

The US Army has aspirations of a responsive imaging system to get imagery

data to warfighters on the ground, and has been exploring some options resembling

disaggregated constellations to provide the kind of coverage necessary for these op-
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Figure 2.8: The JPSS Concept of Operations [49]

erations. This kind of reconnaissance is an example of many military interests in

disaggregation.

2.7 Summary

This chapter has outlined the existing work regarding disaggregation and op-

timization. The next chapter will detail the specific models used in this thesis, and

describe the setup of the algorithm.
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III. Methodology

The Army has exhibited a need for responsive imaging systems with versatile

coverage, by way of the Kestrel Eye and NanoEye programs that are currently under

development. This research uses a genetic algorithm to determine the number of

and parameters for imaging satellites in a mixed constellation, thereby simulating a

potential imaging system and allowing its results to be analyzed. An illustration of

the scenario studied in this research can be seen in Figure 3.1.

Figure 3.1: Army Responsive Space Concept. The user sends a request from a handheld
device for an image from a particular region. The spacecraft takes the desired images as it
flies over the region or target, and sends them back to the users device. The dashed line
represents the spacecrafts actions, and the solid line represents the users actions.

3.1 Problem Statement

The scenario is based on recent Army programs such as Kestrel Eye, NanoEye,

and SATS, which have similar missions. According to a small business innovation

research (SBIR) report for Kestrel Eye, the Army would like to have access to per-

sistent imagery coverage tasked by “lower echelons,” and have the imagery directly
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downlinked from the satellite to the tasking forces, for “battlespace awareness” pur-

poses. The Army is willing to compromise imaging resolution to get delivery within

a few minutes of tasking [31]. This is quantified in the model as a minimum NIIRS

level of 3, and a desired response time of 5 minutes. The region of conflict is assumed

to be the Middle East. With the problem thus stated, the model is implemented.

This model assumes two types of spacecraft in different orbital planes. The types

of spacecraft are large and small, which implies different cost and sensor performance

considerations based on weight and sensor aperture diameter. The number of orbital

planes containing each type of satellite and the number of satellites in each plane are

variable. This arrangement simulates a mixed constellation and attempts to determine

the most cost-effective combination of assets in order to get persistent target coverage.

Mixed constellations combine exquisite systems currently in use with less capable,

shorter-life, targeted capability payloads that still accomplish requirements [1]; the

“large” satellites might be thought of as being augmented by the “small” satellites.

Large here refers to spacecraft between 300 and 5200 kilograms, while small refers to

spacecraft under 500 kilograms. The size of these spacecraft is based on optic sensor

aperture diameter, which is derived from the mass using historical values as scaling

factors.

Twenty-five targets are placed in five locations, in a pattern around a Middle

East location using a Matlab script called targets.m (see Appendix D), and represent

user requests from a common area of operation. User requests will come in randomly

and will likely reside in a similarly sized region of interest. The pattern of targets

used can be seen in Figures 3.2 and 3.3. A similar pattern of targets around Ohio is

used to investigate the effects of higher latitude targets on the optimal constellation,

and the code also includes a target deck in North Korea for future study of various

target decks.

The scenario time is 48 hours, long enough to ensure against a surge of passes

with a long gap between them, but short enough to keep the calculation speed down.
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The mission objective is to image all of the requested targets with an effective response

time, which is entered as a constraint and can be varied on different runs of the

program. This research optimizes a constellation for two specific target decks located

in the Middle East and in Ohio; this algorithm would need to be run for current

existing targets in a real-world situation. The time the GA takes to optimize the

constellation is very long, but can be shortened by using parallel processing and

faster computers.

Figure 3.2: Assumed targets. 25 targets are placed at edges of an assumed region of
interest in the Middle East. Each target can be assigned a different NIIRS value within the
Matlab program, constraint.m. Only five targets are visible since the pattern places targets
on top of each other to represent, for example, five aircraft at an airfield (multiple targets
in a small area).

3.1.1 Assumptions. The scenario results depend on the following assump-

tions: responsive launch vehicle available, capable ground infrastructure, ideal on-

board subsystems (propulsion and attitude determination and control subsystem)

capable of station keeping for the duration of the mission lifetime, clear visibility of
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Figure 3.3: Assumed targets. 25 targets are placed at edges of an assumed region of
interest in the Middle East. Each target can be assigned a different NIIRS value within the
Matlab program, constraint.m.

targets (no weather obstructions), and costs in fiscal year 2010 dollars (FY2010$).

The response time in this thesis refers to the maximum amount of time any target is

out of coverage. This thesis does not account for downlinking data to a groundstation.

The orbits of spacecraft are assumed to be circular. The cost models used also carry

assumptions that are enumerated in Wertz [4], and are summarized here.

The Unmanned Space Vehicle Cost Model, version 8 (USCM8), derives cost

estimating relationships (CER) from a total of 44 satellites using statistical regression

techniques to support parametric cost estimates of unmanned, earth-orbiting space

vehicles with a communications payload. This research uses the National Aeronautics

and Space Administration (NASA) Instrument Cost Model (NICM) for optical Earth-

orbiting payloads in conjuction with USCM8, and it should be noted that combining

models in this way incurs further risk in accuracy of results. For smaller spacecraft,
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Parameter Units Bounds (Large) Bounds (Small)
# Planes - 0-10 0-20
Sats/Pl - 0-10 0-20
Truan deg 0-360 0-360
RAAN Inc deg 0-360 0-360
Alt km 200-5000 200-5000
Incl deg 30-90 30-90
Ecc - 0 0
RAAN deg 0-360 0-360
ArgPer deg 0-360 0-360
M deg 20 20
Diam m 0.1445-0.3774 0.0471-0.1612

Table 3.1: Design vector parameters. The GA varies the design vector within the bounds
shown. Most parameters are ranges but some are simply values; the user may desire to vary
these parameters in subsequent experiments but they are held constant for this research.

the Small Spacecraft Cost Model (SSCM) is used, which is meant for spacecraft

under 500 kilograms and does not account for a specific payload type. This model

does not distinguish between non-recurring and recurring costs, but historical values

were used to determine the breakout of each piece within the code (although that is

inconsequential since they are simply combined immediately) [4]. Four cost models

can be found in Table 3.2 on page 51.

3.1.2 Design Variables. The genetic algorithm will determine a design vector

that resides within specified bounds. The design variables chosen for this experiment

can be divided into three subcategories: Walker parameters, orbital parameters, and

sensor parameters. The Walker parameters are number of planes (# planes), number

of satellites per plane (sats/pl), true anomaly spread (TruAn), and RAAN increment

(RAAN inc). The orbital parameters are altitude (alt), inclination (incl), eccentricity

(ecc), right ascension of the ascending node (RAAN), argument of perigee (ArgPer),

and mean anomaly (M). The sensor parameter is aperture diameter (diam). These

values are summarized in Table 3.1.

The bounds were determined based on a LEO mission for sensors of the sizes

specified in the USCM8 and SSCM cost models, discussed in the previous section. The

Walker parameter bounds are representative of the maximum number of satellites,
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(x1 ∗ x2), to be put in orbit. Number of planes and number of satellites per plane

were used as design variables instead of simply the number of satellites because it is

easiest to calculate the number of satellites as a product, to avoid a potential divide

by zero error that would result from dividing the number of satellites by the number

of planes, should the number of planes be zero. This research varied the number of

planes and sats/plane over different runs, to try to determine what bounds are best

to use so as not to restrict the GA too much.

LEO works well for localized coverage rather than global coverage [4], and of

course provides better signal-to-noise ratio (SNR) and resolution. Therefore the pro-

gram is bounded to LEO altitudes. Note should be taken that, although the model

allows altitudes up to 5000 km, Van Allen radiation makes orbits above about 1000

km less feasible as there is a need for radiation hardening. Inclination is bounded

between 30 and 90 degrees based upon our Middle Eastern target region location,

since we know that near-equatorial orbits will not be useful, and all other angles are

bounded from 0 to 360 degrees. Often in the code, machine zero (1 ∗ 10−6) is used in

place of zero.

The USCM8 Theoretical First Unit (TFU) model is for spacecraft with a bus

mass between 288 kg and 7398 kg, while the Non-Recurring Engineering (NRE) model

is for spacecraft between 114 kg and 5127 kg. To use both these models, the bounds

are from 288 kg to 5127 kg, and from there the corresponding sensor diameter is

computed using Equations 3.1 and 3.2 [4].

mb = m−Wi

= Wi/0.31−Wi

Wi = mb/2.2258 (3.1)
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Use this weight in the equation for aperture ratio (R); calculate R first with constant

K=1, recalculate with K=2 if R < 0.5

R = 3
√
Wi/(KWo)

Ai = R ∗ Ao (3.2)

where mb = bus mass, m = dry mass, Wi = payload mass, R is aperture ratio, Ai

is the required sensor aperture diameter, and Ao and Wo are given by the reference

payload aperture and mass as 0.18 m and 250 kg, respectively, for a reference imaging

spectoral instrument found in Table 17-7 of Wertz [4].

There are many optical parameters that are assumed to be constant. These

include effective focal length, assumed to be 10 meters (Kestrel Eye is also 10 meters

[31], while Ikonos-2 is 8 meters [51]), FOV along-track (assumed to be same as cross-

track), pixel size (assumed to be 30 microns), line rate (unused), time delay integration

(unused), data quantization (unused), and data compression technique (unused) [51].

3.2 The Model

The main wrapper, or program that runs all aspects of the algorithm, for this

simulation was created by Major Robert Thompson. Coupled code includes the con-

straint and cost functions for the genetic algorithm. Within the constraint function

is the script to calculate coverage using the COM interface to STK. For this scenario,

coverage is desired to be greater than 95 percent. The NIIRS constraint is level three,

to reflect the intention the Kestrel Eye SBIR [31]. If higher resolution is desired (po-

tentially at the cost of a longer time), one needs only to change the parameters in

the model. The script that interacts with STK was created using functions from LT

James Sales’ STK library [52], to which we added a few functions more specific to our

needs. The full code can be found in Appendix D.

The wrapper program, image ga.m, contains the bounds and the call to the

genetic algorithm function in Matlab. Options used include a population size of 20,
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a maximum of 50 generations, a stall generation limit of 10, and a function tolerance

of ten, which equates to ten thousand dollars. Most of these terms were defined in

Chapter 2; the stall generation limit refers to the number of generations over which

cumulative change in fitness function value is less than the function tolerance [53].

The output function of the GA was also modified to output the state at each iteration,

so that an early termination due to a runtime error would not result in loss of data.

The constraints are specified in constraint.m and restrict the solver to a National

Image Interpretability Rating Scale (NIIRS) for all targets of three, a coverage of at

least 95% of targets over the scenario period, and a maximum revisit time of a given

number of minutes. The NIIRS constraint can be input as a vector with length equal

to the number of targets, giving each target a different NIIRS constraint.

The NIIRS value is calculated in Sensor performance.m, an amended version of

Maj. Thompson’s original work. It uses slant range to targets (taken from the STK

scenario) in addition to altitude, since the signal to noise ratio is defined by the linear

distance between the target and the sensor. The equations are all taken from [54].

The NIIRS value is calculated by the General Image Quality Equation (GIQE):

NIIRS = c0 + c1 ∗ logGSD + c2 ∗ logRER + c3 ∗H + c4 ∗
G

SNR
(3.3)

Each parameter is defined and determined as outlined in Appendix B.

The field of view (FOV) is not used in calculating the NIIRS value, but it can

be used in calculating the necessary conic half angle for the sensors that are created

in the scenario as FOV/2.

IFOV =
d

f

FOV = IFOV ∗Nm (3.4)

where IFOV is the instantaneous field of view (radians), and Nm is the number of

focal plane array pixels, assumed to be 256. The sensor conic half-angle is then simply
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half the FOV, converted to degrees. This calculation is included for reference, but

for simplicity the program assumes a conic half-angle of 10 degrees for the staring

sensor and 0.28 degrees for the targeted sensor as standard values [4]. For reference,

GeoEye’s Ikonos-2 is a large spacecraft with a field of view of 1.19 degrees, cross-

track [51], so the 10 degree assumption is an over-estimation. Slewing is accounted

for in the STK simulation by using targeted sensors with a max slew rate of 1 degree

per second. The assumed half-angle for the targeted sensor comes from:

FOV =
1.22 ∗ λ
D

(3.5)

for a single pixel, so for a state-of-the-art system with 8000 pixels,

=
1.22 ∗ 0.5 ∗ 10−6m

1m
∗ 8000pixels

= 0.0049rad = 0.2807deg

(3.6)

The sensors are all assumed to have an elevation angle of 90◦, or nadir-pointing. The

call to Sensor performance.m is within ga scenario.m.

The coverage constraint is calculated with gascenario.m, and takes the bulk

of the computing time. This function utilizes the STK library and COM interface.

Within this program is a command that turns off the STK visualization. This feature

was useful in speeding up computation time and reducing run-time errors.

The cost function, cost.m, calculates the cost in 2010 thousands of dollars for

the entire system. This is the value the genetic algorithm attempts to minimize.

The cost is based off the USCM (large spacecraft) and SSCM (small spacecraft) cost

models. Four cost models from Wertz [4] can be seen in Table 3.2; USCM and

SSCM are used for their combination of simplicity and thoroughness as a standard

approximation. All models are imperfect and introduce errors, and the cost models

are approximations that carry many assumptions and should be compared to solutions
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using the same cost models and compounding the same errors. In addition, launch

and ground operations costs are not included. Solutions found by this model will be

relative and should not be compared to real-world system costs.

The USCM8, SSCM, and NICM equations from Table 3.2 are implemented in

the cost function. The QuickCost would be an easy calculation, but would lump the

small and large satellite types together, whereas it is important to this research to

keep those values separate. It is worth noting that these models account for launch

integration costs but not launch vehicle costs. In the real world, one might use, for

example, one rocket per plane for up to eight satellites. Maj. Thompson is working

on models for also estimating launch vehicle costs, and further work should be done

to include launch estimates in this optimization algorithm.

Major Thompson’s work so far has been based on calculating global coverage

with a Walker constellation, whereas this work focuses on a given target deck. The

goal is no longer global coverage, but coverage of important targets with a given re-

sponse time requirement. By investigating the effects on specific target decks, one

must remember that each solution is unique to the assumed target deck. Another

difference between this work and Maj. Thompson’s is the use of targeting reconnais-

sance sensors, rather than push broom or whisk broom surveillance sensors, adding

an element of flexibility to the constellation’s sensing abilities.

3.3 Validation

The cost model was compared with results from the New SMAD [4].

The sensor performance model was validated by comparing results with the

Kestrel Eye specs in the Army SBIR [31] for a satellite with similar size and range.

After generating results, the ratio of the assumed focal length, 10 meters, and the

diameter of most solutions, 0.1 meters, were found to give an f-number of about one

hundred, yielding unrealistically high NIIRS values. To remedy this, the assumed
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Table 3.2: Cost Models [4]. In USCM8 TFU, the payload value is crossed out since it is
already accounted for in the NRE value.

51



focal length is changed to six times the design diameter, or about 0.6 meters. One

run is completed with this parameter to give an example of more realistic results.

The overall results were checked for common sense; for example a shorter revisit

time should require more satellites, and a higher cost should be due to a greater

number of satellites or larger satellites (greater diameter).

An example calculation using a reference solution is completed in Appendix C.

3.4 Implementation

The solutions were generated using the following steps:

1. Input desired target locations in targets.m and run the program to generate

STK target deck file

2. Check filepaths in gascenario.m and image ga.m

3. Input desired constraint values for percent coverage, NIIRS value, and maximum

revisit time in constraint.m

4. Run image ga.m

5. Solution is saved in specified file; check exitflag and run x through constraint.m

to see actual revisit time

The first step was to generate requested targets. This task was accomplished

using targets.m, which generates 25 evenly-spaced targets in the region of interest (see

Figure 3.3). Each target may represent a group of targets, such as a fleet of aircraft

or tanks, and may be assigned a unique required NIIRS value within constraint.m.

The next step is to run the genetic algorithm, which minimizes system cost while

meeting constraints: at least 95% target coverage, a NIIRS of at least the required

value for all targets, and a certain maximum response time. The genetic algorithm

must be run many times in order to yield significant results, since genetic algorithms

are not guaranteed to produce the global minimum every time. Due to constraints

on research time available, the number of runs completed for this thesis still does not
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provide confidence that the algorithm ever reached a global minimum. This entire

process is repeated for every case studied. Each case varies the revisit requirements.

Varying the target deck is outside the scope of this thesis, however a few solutions

were calculated with targets in Ohio to get an idea of the effects of different latitude

targets.

To expedite the process, multiple computers were used to run trials of different

response times simultaneously. Computers used included an AFIT HP laptop with an

Intel Core Duo CPU and 4 GB of RAM with 64-bit Windows 7 and AFIT Dell desk-

tops with AMD Athlon Dual-Core processors, 4 GB of RAM, and 64-bit Windows 7.

The unique lines of code that must be checked before beginning each run are the re-

sponse time and desired NIIRS values in constraint.m, the STK path in gascenario.m,

and the filename used for saving data found in the main wrapper, image ga.m (see

Appendix D). The number of trials in the wrapper program can also be customized.

A flowchart showing the steps of the algorithm is shown in Figure 3.4.

Figure 3.4: Algorithm flowchart. A flowchart showing the steps the algorithm takes to
determine the optimal constellation parameters.

The runtime for the program is about 12 hours, and so a “for” loop was used

to allow the program to run multiple experiments in a row. This way, the simulation

could be left to run by itself and useful results could be gathered over several days.
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After each run of the genetic algorithm, the results were saved along with a modifier

of either “success” or “failure” to denote whether the GA ran to completion or was

terminated early due to a runtime error in STK. The long runtime is due to successive

access calculations in STK for each target. The STK portion of the algorithm takes

up to 5 minutes per iteration. This may be improved upon in the future by using

parallel access computations.

3.5 GA Outputs

After the program finishes, the results can be retrieved by opening the generated

“.mat” and “.fig” files, which store the entire workspace and GA graphic for the

associated run. The output of the genetic algorithm includes the cost in thousands

of dollars (fval), the design vector (x), and an output structure that contains the

status at finishing (output.message), the number of generations the algorithm took

(output.generations), and the maximum constraint violation (output.maxconstraint).

Common messages convey that the GA finished with all values within tolerances,

and that the GA finished but was not able to find a point meeting all constraints.

Only solutions of the first type contain any meaningful information.More detail about

the constraint violation can be seen by running constraint.m with the final design

vector. The exitflag is another important piece of information; 1 means there was no

issue, -2 means constraints were not met, and 0 means that the maximum number

of generations was exceeded. Results that violated constraints were not considered

valid. If the user desires to see the entire population, 20 rows (for population size 20)

of design vectors are available in the variable called population, and the corresponding

costs can be found in the variable called scores.

Another output, selected as an option within the genetic algorithm, is the genetic

algorithm graphic showing the best function value by generation, and the overall best

solution. The upper plot shows how the GA starts with higher cost solutions and

decreases the cost after each generation. An example of this is shown in Figure 3.5.
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Figure 3.5: Example of GA graphic. This is the output plot for a 30 minute revisit time
case using the Middle Eastern target deck. One can see that the GA finds high values at first
and then zeros in on the best function value. The complete data can be found in Appendix
E.

3.6 Summary

This chapter has established the design vector and equations used within the

algorithm, and the flow of the algorithm for determining the optimal disaggregated

imaging constellation for coverage of the Middle Eastern theater. The results will be

discussed in Chapter 4.
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IV. Results

The algorithm was run a total of approximately 40 times with a Middle Eastern

target deck or with a higher latitude Ohio target deck. The solutions were screened

for validity based on whether the algorithm successfully finished, and whether the

solution was useful in comparison to prior solutions. The file targets.m (see Appendix

D) also includes the code to generate a target deck in North Korea that was not run

because it is similar in latitude to the Middle Eastern location. Many preliminary

runs led to changes to make the model better and produce more accurate results. A

maximum revisit time of two hours allowed familiarity with the process, and as the

model improved the revisit time could be comfortably dialed down. Ideally, for the

Army’s mission, the time constraint should be decreased to less than ten minutes as

was stated in the Kestrel Eye fact sheet [30]. This chapter outlines the best results

from the simulation; the complete data for the cheapest and fastest solutions can be

found in Appendix E, including GA plots and population tables.

4.1 Results of the Simulation

The results of the simulation are summarized in Table 4.1. As shown in the

table, the number of satellites and cost of constellation are generally inversely pro-

portional to the revisit time, as one might expect. A faster revisit time will require

more satellites, and each satellite incurs a cost. Recall that the cost depends on size,

which is a function of diameter. Also keep in mind the caveat that these solutions

are relatively comparable, but do not represent actual costs. In many of the figures

shown, a normalized cost is used to emphasize the relative nature of the solutions.

Although the trend between response time and cost or number of satellites

seems intuitive, the precise relationship is more visible when plotted on a scatter

chart (Figure 4.1, Figure 4.2).
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Table 4.1: Summarized results of simulation. The design vector is split into two rows with
the parameters for large satellites on top and for small satellites on the bottom. The number
of satellites and cost of constellation are inversely proportional to the required revisit time.
The seemingly abnormal altitudes compared to the diameters are attributed to the f-number
of the optic, which will be further explained in a later section.
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Figure 4.1: Cost versus Revisit Time. The cost has been normalized to $5 billion refer-
enced to the cost model used to emphasize the purely relative nature of solution costs.
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Figure 4.2: Number of Satellites versus Revisit Time
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4.2 Refining Results

The raw data shows some trends forming, but we must also consider that a

lower cost solution for a faster response time is also a solution for all slower response

times (see Table 4.2). Taking this into account, the charts may be refined using the

cheaper but faster solutions to make the relationships more accurate. The expensive

constellation with a 90 minute revisit time (see Table 4.1 and Figure 4.1) is an

instance where the GA fell into a local minimum and so was unable to find the

global minimum. This effect was mitigated by refining the results (Table 4.2). We

still cannot be sure that these solutions are global minimums, but they are the best

results found so far.

Table 4.2: Refined results of simulation. Same as Table 4.1, but more expensive, slow
revisit times are removed. Again, costs are shown for comparison but do not reflect actual
prices.

The trendlines seen in Figures 4.3 and 4.4 were generated by displaying the

coefficient of determination, R2, and choosing the type of trendline (exponential,

polynomial, power, etc.) that produced the R2 value closest to one. The relationship

is quantified by the equation displayed on the trendline. Confidence in these trends

can be further improved as more data points are collected, checked against prior

solutions to eliminate obvious local minimums, and added to the chart.

Several NIIRS values are higher than 9, which is infeasible for any orbital imager,

but is attributable to the f-number of the notional system, described later. That issue
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Figure 4.3: Cost versus Revisit Time with refined solutions. Again the cost is a normalized
value.
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Figure 4.4: Number of Satellites versus Revisit Time with refined solutions
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scales all NIIRS levels higher than they should be, but the relative NIIRS values

should hold true, and the margin between our minimum NIIRS requirement (level 3)

and the NIIRS values of the solutions is large.

Some interesting trends are already becoming apparent. A logarithmic relation-

ship seems to exist between number of satellites and revisit time, as well as between

cost and revisit time. Since the values are directly proportional, it is intuitive for the

cost curve to have the same shape as the number of satellites curve. The number

of satellites increases exponentially with lower revisit times because of the multi-

dimensional nature of the problem and the wide circular footprints of each spacecraft

augmented by targeted sensors. The area of the footprint is a function of the square

of the radius, where the radius is proportional to the altitude. Very short revisit

times will require nearly persistent coverage, for which many satellites are needed.

For each minute that access is not required, that many fewer satellites are needed

to provide coverage. Our disregard to launch costs for this study would not affect

that relationship too much, since launch costs are one time at the beginning of life

and would simply shift the curve up the cost axis. As more data points are added,

the trend can be held with higher confidence. We also see that most of the solutions

make use of mixed disaggregated constellations, augmenting constellations of small

satellites with a few larger satellites.

The results of the GA came out seemingly at random, but ideally thousands

of runs should be done to fill in all the gaps in information. However, the results

seen here allow for some theories to start to be developed while more data points are

gathered. For example, Figure 4.4 makes it clear that the higher latitude target,

Ohio, needs fewer satellites for similar revisit times. It is notable that Ohio also has

a smaller area than the Middle East target, which will affect comparisons to some

degree.

Computation time for the simulation is on the order of 12 hours. The GA

settles on some particular “minimum” function values over multiple runs, from which

63



we must take the lowest. Remember that the GA is not guaranteed to find the global

minimum every time, and may get stuck in a local minimum.

4.3 Trade-offs

Cost and resolution must be balanced. Higher resolution is possible with lower

altitude and larger aperture diameter. One would guess that lower altitude satellites

have a shorter period resulting in faster revisit times, so higher altitude solutions

should require more satellites. On the other hand, lower altitude satellites have a

smaller footprint and must be augmented by more satellites. Larger diameter means

bigger, more expensive satellites. The GA’s contention is to find the sweet spot that

gives the lowest cost, which may mean a non-intuitive solution because of the complex

trade-offs found in this problem.

In light of these trade-offs, a few more charts are provided based on the simu-

lation results in Figures 4.5, 4.6, and 4.7.

4.4 Realistic Results

The results described in the above sections include constellation designs with

high altitude orbits and low sensor aperture diameters. This leads to the question of

feasibility: at thousands of kilometers, with such a small optic, even low level NIIRS

values may not be attainable. The issue was with the f-number, which was briefly

described in Chapter 2 as the ratio of the focal length and the aperture diameter.

With the assumed focal length of 10 meters used to get these results, and sensor

diameters on the order of 0.1 meters, the f-number comes out to about 100. Recall

from Chapter 2 that Landsat 7 has an f-number of 6 [47], so even a high end optic

would not realistically be able to achieve an f-number of 100. To add realism, future

implementations of this problem should use a focal length of six times the diameter.

Despite this lapse in realism, results are still accurate relative to each other,

and the algorithm can be used to optimize any problem in conjunction with STK
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Figure 4.5: NIIRS versus Cost. This is the main trade-off of resolution versus cost. The
minimum NIIRS value was used to generate this data. A general trend can be seen of
increasing cost with increasing resolution, as one would expect.
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Figure 4.6: Diameter versus Altitude. The smaller satellites with the smaller aperture
diameters are generally placed in higher altitude orbits and are greater in number, whereas
the larger satellites are found to be more useful at lower altitudes. This is an interesting
correlation to find, since one would expect the smaller aperture to be compensated for by
placement in lower altitudes. It is likely that the lower altitude satellites (which are generally
larger based on Figure 4.7) are used to get good resolution, while the higher satellites were
primarily filling in coverage.
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Figure 4.7: Altitude versus Cost. Here Middle Eastern target deck solutions are shown
in red and Ohio target deck solutions shown in blue, with different shapes for the smaller
and larger satellites. This chart shows the larger satellites clustered at lower altitudes and
the smaller satellites clustered at higher altitudes. A very slight trend might be seen with
higher costs at lower altitudes, but no real correlation can be drawn from this data.
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propagation as long as the user has mathematical models and inputs to represent the

problem.

4.5 Analysis

Many solutions found were at very high altitudes, and with a NIIRS requirement

of only three, this is not a problem. For example, the 30-minute constrained Ohio

case has satellites at 2000 and nearly 7000 kilometers, but gets NIIRS values of only

4. However, despite the NIIRS constraint of 3, many solutions’ NIIRS values were

much higher. The solutions with higher NIIRS values were the lowest cost solutions

despite the lenient NIIRS requirement, which may imply that lower cost solutions

are possible (with lower resolution). An interesting question is what quantitatively

happens to the solution if the NIIRS requirement is increased. For higher NIIRS

requirements, the low altitude required for resolution (or larger aperture diameter)

must be balanced out with the higher altitudes needed for coverage. Many solutions

used altitudes in the hundreds of kilometers to yield much higher NIIRS values. A

single run with a NIIRS constraint of 8 (see the last line for the Middle East target

deck in Table 4.1) yielded a much higher cost than comparable solutions. The trend

between NIIRS requirements and costs should be further investigated.

The solutions shown in Figure 4.6 are counterintuitive, and may be a result

of a flaw in the algorithm. The algorithm may be led to put smaller satellites at

higher altitudes because the footprint is wider at higher altitudes and provides better

coverage, whereas the larger satellites have a large footprint even at lower altitudes.

The high f-number used likely allowed this trend, as the small satellites at very high

altitudes could still meet the NIIRS level three constraint. In actuality, the NIIRS

level reached by small apertures at high altitudes would be much smaller than three.

The user should change the focal length as described above to yield more realistic

results.

We see that higher latitudes (Ohio) require fewer satellites to get similar revisit

times. This may be intuitive if one considers that higher inclinations see higher
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latitudes more frequently. Equatorial targets may be more difficult to cover. This

also may be partially attributed to the difference in area between the Middle East

target and the Ohio target.

Another interesting point is that although solutions had the option of using no

small or large satellites, the solutions still used a few more expensive large satellites.

In this way, the genetic algorithm provides evidence that mixed constellations are

more cost-effective than constellations of a single type (size) of satellite for providing

target coverage.

Remember that the cost model values are relative, not real, and so actual costs

are likely to be higher than seen here. Also, all solutions found above about 1000 km

will need radiation hardening due to the Van Allen radiation belt.

4.6 Recommendations

The cheapest solution found so far was a 104 minute response time with 43

satellites for the Middle East, costing a relative value of 0.09, and a 48.8 minute

response time with 33 satellites for Ohio, costing a relative value of 0.08. The fastest

solution found was 1.89 minutes with 288 satellites for the Middle East, costing a

relative value of 1, and 12.9 minutes with 82 satellites for Ohio, costing a relative

value of 0.3. The commander of the mission would need to make the call on which

solution to use to make best use of resources and time, and the commander’s choice

may be a compromise between response time and cost. The average cost per satellite

also must be weighed against the total cost of the covering constellation (see Table

4.2). The user must consider the timeline and budget of the project when weighing

between constellation and per satellite costs.

The GA was able to get response times within 15 minutes for a relative cost of

0.3, which might be good enough for the Army’s mission (remember from Chapter 2

that they hope for approximately 10 minutes response time); more runs might yield

even more cost-effective results. The solution with a response time within only two
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Table 4.3: Cheapest and fastest results for the Middle East and Ohio target decks, nor-
malized to $5 billion referenced to the cost model.

minutes is certainly the best for responsiveness, but the high pricetag might make

this solution unrealistic.

4.7 Comparison with Other Work

Captain Steven Ingraham’s thesis [29] used maneuverable satellites. Combining

his work with this GA algorithm could yield interesting results, since this thesis as-

sumed a fixed constellation. Maneuverability could allow more flexibility in resolution

and cost.

Ingraham’s thesis determined that the inclination to use for optimal coverage

of a target area is the sum of the target latitude and the Earth central angle of the

spacecraft [29]. Using calculations provided in his thesis (see Chapter 2) and assuming

a minimum elevation angle of 5 degrees, the optimal inclination to use for our targets

can be seen in Table 4.4.

Some of the inclinations found by the GA are as close as within ten degrees to

the calculations provided by Capt. Ingraham, though many are very far off. The GA

uses a combination of small and large satellites that can be placed in different orbits.

A different optimal inclination might be found if Capt. Ingraham’s work accounted

for mixed orbits rather than a single constellation. The deterministic process used
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Table 4.4: Optimal inclinations versus inclinations calculated by the algorithm. The
altitudes and inclinations are taken right out of Table 4.1 and the “optimal” inclinations
are calculated using Capt. Ingraham’s equations [29]. The inclinations that are close to
Capt. Ingraham’s optimal inclination (arbitrarily defined as within 10 degrees) are generally
lower in altitude than the farther off ones.

by Capt. Ingraham is much different than the stochastic process used by the GA for

finding optimal inclinations.

Using the same cost models as this research, TACSAT’s constellation yields a

cost of $990 million dollars for 10 satellites (52 minute revisit), and $1.7 billion dollars

for 20 satellites (22 minute revisit) [35]. Running each through the sensor performance

code, both have a NIIRS value of 3.2 over the Middle Eastern theater. Comparing

the TACSAT numbers to the results found in this thesis, and keeping in mind the

purely relative nature of the cost model used, a 104 minute revisit is found for $430

million, and a $1.7 billion dollar constellation only yields a revisit of 66 minutes, but

the NIIRS values for these are about seven. The higher cost could be attributed to

the higher NIIRS values rendered by the solution.

Another important difference is that these works did not account for constella-

tion costs, which affect the size and number of spacecraft that can be used. While

Capt. Ingraham and TACSAT optimize for more efficient constellations (maximum

coverage), this thesis attempts to balance cost with response time of solutions (mini-

mizing cost).
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4.8 Summary

In this chapter, the simulation results were given and a trend could begin to

be established between revisit time and cost, as well as revisit time and constellation

size. The last chapter will provide conclusions of this thesis.
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V. Conclusions

The main contribution of this work was the genetic algorithm model that could

be run in Matlab, in conjuction with STK, to optimize constellations for desired

parameters, and especially the automation that the code offers in providing solutions

for any given target deck. The results showed that augmenting a constellation of

large satellites could be effective in increasing capabilities, and that a stand-alone

constellation of small, inexpensive satellites could accomplish the mission of nearly

persistent coverage at a minimum NIIRS level of three with just a few exquisite (large)

satellites to augment it. This work should be referenced by sponsors to save money

and increase capabilities as space architectures are made more resilient and efficient.

5.1 Challenges

The most challenging part of this research is the limitation brought about by

the computation time. Each time a change is made, the user must wait overnight to

see its effects. This issue is a resource limitation; more available computing power

would increase productivity of this algorithm.

Another challenge was accomplishing STK tasks within Matlab code. To execute

STK tasks in Matlab, multiple references are often needed, and it is necessary to splice

example Matlab code with example commands from STK. The user must realize

that the STK name and Matlab name for a particular object are not necessarily

the same. STK provides an object model, which maps every possible object and its

children (sublayers) within STK, but adapting these objects into a Matlab-friendly

environment is not a trivial task.

5.2 Recommendations for Future Work

The benefits of disaggregation are clear, but the biggest obstacle is its character-

istic of low reliability. To overcome this, disaggregation should be applied to existing

missions and observations of performance recorded; many data points are required

and the easiest way to get them is to conglomerate results of various missions that
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utilize disaggregated architectures. Well-established companies with existing constel-

lations could experiment with disaggregation concepts, and by pooling the resulting

data, no single company would have to take too large a risk.

To that end, Eric Fanning, undersecretary of the Air Force, was quoted this

year in a March 5 briefing with reporters, saying, “The Air Force is committed to

disaggregation [55].” In the same briefing, Major General Robert McMurry, director

of space programs in the Air Force acquisition office, said the Advanced Extremely

High Frequency (AEHF) system will be the first existing program to incorporate

disaggregation [55]. Following this trend, disaggregation concepts should be inserted

into relevant, existing programs to reap the potential benefits.

The code that resulted from this work could also be adapted for various other

uses, by changing the design vector, constraint functions, and cost function to suit

the user’s unique needs.

The model created in this research could be expanded and further explored.

Many interesting questions were not able to be investigated that were mentioned in

the analysis in Section 4.5. More future work to be done includes:

• Model launch vehicle costs

• Model ground architecture

• Multi-objective architecture optimization

• Prioritization of targets (other than STK default scheduling algorithm)

• Investigation of whether different optimizers change solutions

• Simultaneous access calculations

• Runs of the algorithm with more or different target decks and NIIRS levels

Launch vehicle costs were not considered in this thesis. A simple, linear launch

cost model would be an easy addition to future iterations of this work. Further re-

search should investigate how the cost function might change by using different launch

vehicles or bundling spacecraft together on launch vehicles in various configurations.
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This thesis has not accounted for downlinking data and images to a groundsta-

tion or handheld device of any sort. This should be accounted for and modeled in

future renditions of this research.

This thesis has focused on single-objective architecture optimization; there are

multi-objective optimization techniques available that should be applied to disaggre-

gation concepts. This would include optimizing the constellation with respect to not

only cost, but also response time and number of spacecraft in the constellation. Lower

cost, faster response time, and fewer spacecraft are better. This research also concen-

trated on maximum revisit time as a figure of merit; mean, minimum, and maximum

coverage gaps, as well as other figures of merit, could be used in a multi-objective

optimization.

This thesis has not attempted to assign weights to targets. STK has a scheduling

algorithm that it automatically applies to sensing spacecraft. Future research should

assume that some user-requested targets will be higher priority than others, and assign

weights to targets accordingly. This concept will only be viable for specific examples

of target decks, and in the real world will need to be evaluated for actual targets.

This thesis used exclusively Matlab’s genetic algorithm to optimize the constella-

tion. Future work may involve exploring different optimization algorithms. Examples

of different optimizers were discussed briefly in Section 2.3. Further improvements

to the model can be made within the GA as well. Using a higher population size and

a lower function tolerance will yield better results.

Computers with more cores may be available to speed up the algorithm. If

there is a way to calculate access for all targets simultaneously, that would speed up

calculation time even more. Extracting data points without generating reports would

also reduce calculation time. Within the model itself, the calculation could be done

faster by further restricting the bounds. For example, a smaller range of inclinations,

based on the location of the target region, would be plausible. More study should be

done to determine appropriate bounds.
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Analyzing the results of disaggregation will take a long time, and can only be

furthered by continually applying it to different assumed target decks. The more data

that is available, the more knowledge we will have of its merits and drawbacks. Even

the Middle East and Ohio target decks explored here could be further expounded

upon.

5.3 Conclusions

This thesis determined that the Army’s mission objectives - user-tasked coverage

of a target region within minutes - could be reasonably accomplished in under 12

minutes, using 234 satellites (large and small) at a NIIRS level of seven (better than

the required three). A 2 minute response time is possible but may be too costly,

and a 100 minute response time could be achieved but might not provide fast enough

response. The smallest notional average cost per satellite is $10 million, but that

includes both large and small satellites that cannot maneuver, so the Army’s estimate

of around $1 million per satellite may be achievable in a smaller constellation of

maneuverable satellites. These solutions assume that the targets covered per pass are

limited in number and located in the Middle East as described in Chapter 3.

This work did not assume maneuverable satellites, but the savings from using

fewer satellites for coverage might be offset by the cost of fuel used for maneuvering.

The solutions in this thesis are representative of disaggregated imaging systems in

mixed constellations, and help to confirm the belief that an augmenting constella-

tion of small satellites can add increased capability to a constellation of monolithic

spacecraft. We must remember that in actuality, small spacecraft typically have less

capability, and so larger spacecraft may be needed to technically accomplish the pro-

posed mission.

The genetic algorithm can optimize this problem within 12 hours. Our method

of letting the scenario propagate automatically within the genetic algorithm saved

time; the population of spacecraft was much faster than it would have been to do

it by hand. For the number of runs the genetic algorithm requires, the automatic

76



interface is best because it can be allowed to run overnight without oversight. Also,

computers with more cores are available and can be used to significantly reduce the

computation time.

In general, an existing constellation of large satellites used to image high-

resolution targets with a lenient revisit time could be augmented by a constellation of

small satellites focusing on a region of interest to provide higher resolution imagery

and a much shorter revisit time.

Shifting the collective mindset from monolithic spacecraft to modular, disag-

gregated systems may be the gateway to having myriad advanced and amalgamated

systems in orbit and beyond. As Neil Armstrong so eloquently phrased it, disaggre-

gation could be “one small step for [a] man; one giant leap for mankind.”
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Appendix A. Astrodynamics

To understand what the design vector parameters represent, a few definitions

are necessary, and are summarized in Table A.1. Apogee is the point of the orbit

farthest from the Earth, while perigee is the point of the orbit closest to Earth, and is

exactly 180◦ from apogee. The vernal equinox is the point in the sky where the Sun

is located on the first day of spring [4], and is used as an inertial reference point. All

angles are measured with the center of the Earth as an origin point. The equatorial

plane is a plane extending into space from the Earth’s equator.

Semi-major axis is defined as half the linear distance from apogee to perigee.

For circular orbits, such as those used in this research, it is simply the distance from

the center of the Earth. The altitude can be calculated by subtracting the mean

radius of the Earth, 6378.137 kilometers, from the semimajor axis [4].

Figure A.1: Semi-major Axis

Eccentricity quantifies the circularity of an

orbit. A circular orbit has an eccentricity of zero;

the orbit becomes more elliptical as eccentricity

approaches one. Higher eccentricities represent

hyperbolic orbits, and are not discussed in this

paper.

Inclination is the angle between the equa-

torial plane and the orbital plane, with 90◦ rep-

resenting a polar orbit.

Figure A.2: Inclination

Right ascension of the ascending node is

the angle measured eastward between the ver-

nal equinox and the ascending node of the orbit,

where the orbit crosses the equatorial plane trav-

elling northward.

Argument of perigee is the angle measured

in the direction of satellite motion between the
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Vernal equinox Inertial reference point
Semi-major axis Radius of orbit
Inclination Angle of orbit with respect to Earth’s equator
Right ascension of the ascending node Angle of orbit with respect to the vernal equinox
True anomaly / Mean anomaly Spacecraft’s position in orbit

Table A.1: Astrodynamics Definitions for Circular Orbits

ascending node and perigee. For circular orbits, this measurement exists but is irrel-

evant.

True anomaly is the angle between perigee and the spacecraft. For a circular

orbit, the true anomaly is equivalent to mean anomaly [4], M, which is used in this

paper. The true anomaly is the only one of the classical orbital elements that changes

over time, since it describes the spacecraft’s position in space as it travels around the

Earth.
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Appendix B. NIIRS Parameter Derivations

First the slant range is determined for each target by STK, and used to compute

the ground sample distance (GSD):

GSD = Rslant
d/f√
cosψ

where Rslant is slant range determined by STK, d is the width of the focal plane detec-

tor in meters assumed to be 30 ∗ 10−6 to match Teledyne Imaging Sensors CHROMA

Visible-Infrared Focal Plane Array, f is the focal length in meters assumed to be 10

to match Kestrel Eye [31], and ψ is elevation angle of the spacecraft computed using

the arccosine of the semi-major axis divided by the slant range. The ground sample

distance (GSD) of the Kestrel Eye program, 1.5 meters [31], was used to verify the

accuracy of this equation by assuming Kestrel Eye data from the Army SBIR [31]:

500 km range, 30 ∗ 10−6 m pixel width, 10 m focal length. Also assuming a nadir

pointing sensor (ψ = 0) gives

GSD =
50000030∗10−6

10

1
= 1.5m

The relative edge response (RER) is computed next using a modulation transfer

function (MTF). For this equation, we assume no jitter, smear, or wavefront aberra-

tion. We also assume a circular aperture with no obscurations. This simplest case

includes only the most significant factors: the sampling of the detector/telescope

combination, and the diffraction characteristics of the telescope. The system MTF is

given by

MTFsystem = MTFsampling ∗MTFdiffraction
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where both MTFs are normalized over the same frequency. The sampling and diffrac-

tion MTFs are

Xsampling =
f

d

MTFsampling =
sin (πχ)

πχ

Xdiffraction =
D

λ

q =
Xsampling

Xdiffraction

MTFdiffraction =
2

π
(arccos (χ/q)− χ/q

√
1− (

χ

q
)2)

where χ is the cutoff frequency, D is the aperture diameter (a design variable), and

λ is the mean wavelength in meters, assumed to be 0.65 ∗ 10−6 for visible light. The

edge response (ER) defines the contrast of a picture, and is defined by

ER(ζ) = 0.5 +
1

π

∫ 1/q

0

(
MTF (χ)

χ
sin (2πχζ)) dχ

where ζ is the number of pixels offset measured from the edge. The MTF here is the

system MTF including all contributions (in our case, only sampling and diffraction).

The RER and overshoot parameter (H) can then be found.

RER = ER(0.5)− ER(−0.5)

= 2

∫ 1/q

0

(MTF (χ)
sin (πχ)

π ∗ χ
) dχ

H is the peak value of the ER over the range ζ = 1 to 3, or the value of the ER

at ζ = 1.25 if the ER monotonically increases over that range. This is done in the

Matlab code using if statements and using a search fuction to find the maximum value

of the ER evaluated at intervals of 0.01 between 1 and 3.

For G, [54] suggests using half of the signal-to-noise ratio (SNR) as a conservative

estimate. However, this yielded values too high for G. Thurman [56] summarizes the
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Minimum Mean Maximum

GSD 3 in 20.6 in 80 in
RER 0.2 0.92 1.3
G 1 10.66 19
SNR 2 52.3 130
G/SNR 0.01 - 1.8
H 0.9 1.31 1.9

Table B.1: Ranges for GIQE parameters [56]

ranges for GIQE values, shown in Table B.1. The mean value for G, 10.66, was used

in all cases as a rough approximation. The rest of the ranges in the table were used

to verify all sensor performance values.

The SNR is the most complicated calculation with varying parameters, but

typical values are used to determine a rough approximation.

SNR =
∆ρ ∗RS√
ρ ∗RS +RH

∗
√
K ∗ tint

where target reflectance must be assumed. The GIQE Users Guide recommends using

a delta reflectance ∆ρ of 0.08 for computing the target signal, and a reflectance ρ of

0.15 to compute the random noise due to the target signal. A conservative estimate

for integration time, tint, is 0.001 seconds. K for visible near infra-red (VNIR) is

1.63∗10−13electrons∗photons−1 ∗m2 ∗ sr, and scene and haze spectral radiances (RS

and RH , respectively) are taken as the rough area under the curve, over wavelength

of interest 0.4 to 1 micron, in the graph shown in Figure B.1. For scene radiance,

the area under RSλ is approximately

RS = 0.5 ∗ (0.9− 0.4) ∗ (1.35 ∗ 1021 − 6 ∗ 1020) + (0.9− 0.4) ∗ 6 ∗ 1020

and the area for haze reflectance, under RHλ is approximately

RH = 0.5 ∗ (0.9− 0.4) ∗ 2 ∗ 1020
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These approximations assume that the Sun and sensor are both directly overhead

from the target, and so actual numbers will differ.

Figure B.1: Reflected and Haze Spectral Radiances (Top of Atmosphere) [54]. The
reflected (or scene) and haze radiances needed for SNR calculations can be computed as the
area under the curve over the wavelength range of interest.

The coefficients c0 through c4 are assumed to be the GIQE Version 4 (GIQE

4) coefficients in metric units for RER < 0.9, found in Table 10 of Auelmann’s

article [54]:

c0 = 5.205

c1 = −3.16

c2 = 2.817

c3 = −0.656

c4 = −0.344
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Appendix C. Reference Solution Cost Calculation

This Appendix will go through an example calculation for the following design

vector:

x = [1 1212.1 217.11384.3 041.2 175.50 200.1456

8 4115.8 76.45435.3 052.9 212.10 200.053]

This design vector yields a 48.8 minute revisit time and costs $420 million

dollars. The cost is calculated using a typical imaging spectoral payload from [4],

which has the characteristics specified in Table C.1.

The sizing ratio of the sensor compared with the reference sensor is calculated

using the diameters of each:

R =
Ai

Ao

=
0.1456

0.18
= 0.8089

for the large spacecraft and

R =
0.053

0.18
= 0.2943

Parameter Symbol Value
Aperture diameter Ao 0.18 m
Mass Wo 250 kg
Power Po 225 W
Data rate DR 11 Mbps

Table C.1: Reference Payload Characteristics [4]
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for the small spacecraft. For R < 0.5 (the small spacecraft), K will be 2. Otherwise

K is 1.

Wi = K ∗R3 ∗Wo

= 0.80893 ∗ 250 = 132.3187

Pi = K ∗R3 ∗ Po

= 0.80893 ∗ 225 = 119.0868

for the large and

Wi = 2 ∗ 0.29443 ∗ 250 = 12.7425

Pi = 2 ∗ 0.29443 ∗ 225 = 11.4683

for the small, so the dry mass of each spacecraft is

m = Wi/0.31−Wi

= 132.3197/0.31− 132.3197 = 294.5158kg

for the large and

m = 12.758/0.31− 12.758 = 28.3624kg

for the small. The data rate is assumed to be the same as the reference payload. So

the NICM model payload cost is:

NICM = 1163 ∗W 0.426
i ∗ P 0.414

i ∗ (DR)0.375

which is 165,700 for the large and 23,228 for the small.
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Next, the USCM NRE cost is calculated as the sum of the spacecraft, payload,

integration and test (IAT), program level, and ground equipment costs, and is only

valid for the large spacecraft:

NREspacecraft = 110.2 ∗m

NREpayload = 0.6 ∗NICM

NREIAT = 0.195(NICM + USCMspacecraft)

NREprogram = 0.414(USCMIAT + USCMspacecraft)

NREAGE = 0.421(USCMspacecraft)
0.907 ∗ 2.244

Plugging in the appropriate values and summing these together, the USCM cost for

the large spacecraft 193,340. The TFU cost is calculated next as the sum of payload,

spacecraft, IAT, program, and launch and operational support costs:

TFUpayload = 0.4 ∗NICM

TFUspacecraft = 289.5 ∗m0.716

TFUIAT = 0.124(TFUspacecraft + TFUpayload

TFUprogram = 0.320(TFUpayload + TFUspacecraft + TFUIAT )

TFULOOS = 5850

which equates to 129,360.
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Finally, the small spacecraft cost is calculated using the SSCM model, as follows.

First the non-recurring engineering cost:

SSCMspacecraft = 1064 + 35.5m1.261

SSCMpayload = 0.4 ∗ SSCMspacecraft

SSCMIAT = 0.139 ∗ SSCMspacecraft

SSCMprogram = 0.229 ∗ SSCMspacecraft

SSCMGSE = 0.066 ∗ SSCMspacecraft

SSCMLOOS = 0.061 ∗ SSCMspacecraft

which gives a value of 3545.9. The TFU costs are

0.4 ∗ SSCMspacecraft+0.4 ∗ SSCMpayload + 1 ∗ SSCMIAT

+0.5 ∗ SSCMprogram+0 ∗ SSCMGSE + 1 ∗ SSCMLOOS

for 3038.6. The total cost is the sum of all of these final values.

1 ∗ (NRE + TFU) + 32 ∗ SSCM = 423, 480

This is calculated in thousands of dollars, so the actual price of the constellation will

be $423 million.
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Appendix D. Matlab Code

D.1 Genetic Algorithm Code

Listing D.1: Appendix1/targets.m

1 Scen.Title = ’Imager ’;

Scen.TimeStep = 5;

Scen.StartTime = ’16 Sep 2013 16:00:00.000 ’;

Scen.EndTime = ’18 Sep 2013 16:00:00.000 ’; % 48 hour scenario

[uiapp , root] = STK.Initialize(Scen);

6

% for n=1:20

% target(n)=STK.create_target(horzcat(’target ’,num2str(n)),...

root ,[ randi ([-45,75] ,1),randi ([ -180 ,180] ,1) ,0]);

% end

11 % Middle East

for n=1:5

target(n)=STK.create_target(horzcat(’target ’,num2str(n)),root...

,[36 ,41 ,0]); %upper left

end

for n=1:5

16 target(n)=STK.create_target(horzcat(’target ’,num2str(n+5)),...

root ,[36 ,46 ,0]); %upper right

end

for n=1:5

target(n)=STK.create_target(horzcat(’target ’,num2str(n+10)),...

root ,[30 ,42 ,0]); %lower left

end

21 for n=1:5

target(n)=STK.create_target(horzcat(’target ’,num2str(n+15)),...

root ,[30 ,48 ,0]); %lower right

end

for n=1:5

target(n)=STK.create_target(horzcat(’target ’,num2str(n+20)),...

root ,[33 ,44 ,0]); %center (near Baghdad)

26 end
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% % Ohio

% for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n)),...

root ,[42 ,-85,0]); %upper left

31 % end

% for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n+5)),...

root ,[42 , -80.5 ,0]); %upper right

% end

% for n=1:5

36 % target(n)=STK.create_target(horzcat(’target ’,num2str(n+10)),...

root ,[39 ,-85,0]); %lower left

% end

% for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n+15)),...

root ,[39 ,-81,0]); %lower right

% end

41 % for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n+20)),...

root ,[40 ,-83,0]); %center (Columbus)

% end

% % N. Korea

46 % for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n)),...

root ,[41 ,125 ,0]); %upper left

% end

% for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n+5)),...

root ,[43 ,130 ,0]); %upper right

51 % end

% for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n+10)),...

root ,[38 ,125 ,0]); %lower left
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% end

% for n=1:5

56 % target(n)=STK.create_target(horzcat(’target ’,num2str(n+15)),...

root ,[38.5 ,128 ,0]); %lower right

% end

% for n=1:5

% target(n)=STK.create_target(horzcat(’target ’,num2str(n+20)),...

root ,[39 ,126 ,0]); %center (Pyongyang)

% end

61

root.SaveScenarioAs(’I:\My Documents\THESIS\STK_Matlab\Imager\...

Matlab \180 minute\TargetDeck.sc’);

Listing D.2: Appendix1/image ga.m

% image_ga -> Disaggregated Space System Optimization Routine ...

using the

% matlab genetic algorithm routine

3 clear all;

close all;

clc

% for trial =1:10

8 %GA setup

% Initialize global variables (sensor angles)

global nvars ntargets

%*************************** USER INPUTS...

************************************

13 % Lower and Upper Bounds on System Type Parameters

% Type: Unmanned Spacecraft (large)

vec (1).num =[0 0 0 0;10 10 360 360]; % num planes , sats/plane , ...

true an phasing; RAAN increment

vec (1).location =[200 1e-6 30 1e-6 1e-6 20; 2000 1e-6...

90 360 1e-6 20]; % alt e i om w M

vec (1).design =[.1445;.3774]; % diam
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18 % Small Spacecraft (small)

vec (2).num =[0 0 0 0;10 10 360 360]; % num planes , sats/plane , ...

true an phasing; RAAN increment

vec (2).location =[200 1e-6 30 1e-6 1e-6 20; 7000 1e-6...

90 360 1e-6 20]; % alt e i om w M

vec (2).design =[.0471;.1612]; % diam

23 % How many parameters per system type?

ntargets =25; % RUN TARGETS.m!!

nvars = 11; % Number of variables

types=numel(vec);

28 %*********************** END USER INPUTS...

************************************

ObjectiveFunction = @cost;

for n=1: types

33 LB(nvars*n-nvars +1: nvars*n) = [vec(n).num(1,:) vec(n)....

location (1,:) vec(n).design (1,:)]

UB(nvars*n-nvars +1: nvars*n) = [vec(n).num(2,:) vec(n)....

location (2,:) vec(n).design (2,:)]

ints (2*n -1:2*n) = [nvars*n-nvars+1,nvars*n-nvars +2];% num ...

planes and num sats/plane must be integers for each ...

type

end

ConstraintFunction = @constraint;

38 options = gaoptimset(’PlotFcns ’,{@gaplotbestf ,@gaplotbestindiv...

},’StallGenLimit ’,10, ...

’Display ’,’iter’,’OutputFcns ’,@gaoutputfcn ,’PopulationSize...

’,20,’TolFun ’,10,’Generations ’ ,50);

%GA solver routine

try
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43 [x,fval ,exitflag ,output , population , scores] = ga(...

ObjectiveFunction ,nvars*types ,[],[],[],[],LB ,UB , ...

ConstraintFunction ,ints ,options)

modifier=’success ’;

catch me

modifier=’failed ’;

48 report=getReport(me);

end

filename= strcat(date ,modifier);

save(filename)

53 saveas(gcf ,filename)

% end

Listing D.3: Appendix1/cost.m

function Cost = cost(x)

global nvars

%x is defined as a point solution to test the function prior to ...

optimizing

5 %x=[10.0000 9.0000 0.2000 200.0000 0.0500 200.0000]

% x = [ nplanes nspp truan a e i RAAN omega M ...

dia ]

% x = [ 3 1 180 200 1e-6 98.6 0 0 20...

1.2...

% 7 1 180 200 1e-6 98.6 0 0 20...

.05];

10 % nvars =10;

% % Change design vec to variables

% %****************** REFERENCES...

**********************************************

%Characteristics of typical imaging spectoral payload - pg 510
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15 Ao=.18; %(Initial ref sensor aperature diameter)

Wo=250; %Weight in kg of reference payloads

Po=225; % Ref power , W

dro =11; % Ref data rate , Mbps

% ...

%**************************************************************************...

20 types=numel(x)/nvars;

for n=1: types % n refers to sat type

nsats(n)=x(n*nvars -nvars +1)*x(n*nvars -nvars +2);

diam(n)=x(n*nvars);

25 if nsats(n) >0 z(n)=1; else z(n)=0; end

%system sizing summary

Ai(n)=diam(n); %(New instrument aperture diameter) - sec ...

17.2.6 pg 516

30 R(n)=Ai(n)/Ao; %Sizing Ratio

if R(n) <.5; K(n)=2; else K(n)=1; end

Wi(n)=K(n)*R(n)^3*Wo; % design sensor mass

Pi(n)=K(n)*R(n)^3*Po; % design sensor power

Spacecraftdrymass(n)=(Wi(n)/.31) -Wi(n); %Table 14-18 pg 422, ...

LEO s/c w/ prop **need to subtract p/l mass , right?

35

% Calculate NICM NRE+TFU for Optical Earth -Orbiting Payload (...

pg 303 11-14)

% (Historically 60% NRE , 40% Recurring [Old SMAD pg 799])

% SMAD pg 297: Some risk associated with combining models; ...

combined b/c

% optical payloads omitted from USCM8 model

40 payloadcost_NICM(n)=1163* Wi(n)^.426* Pi(n)^.414* dro ^.375;

end
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%Calculate USCM NRE cost -> non -comm sat , SME -SMAD table 11-8 pg ...

298

Spacecraftcost_USCM =110.2* Spacecraftdrymass (1);

45 payloadcost_USCM =0.6* payloadcost_NICM (1); % 60% NICM is NRE

IAT_USCM =.195*( payloadcost_USCM+Spacecraftcost_USCM);

ProgramLevel_USCM =.414*( IAT_USCM+Spacecraftcost_USCM);

AGE_USCM =.421*( Spacecraftcost_USCM)^.907*2.244;

50 TotalCost_USCM_NRE=payloadcost_USCM+Spacecraftcost_USCM+IAT_USCM+...

ProgramLevel_USCM+AGE_USCM;

C(1)=TotalCost_USCM_NRE;

%Calculate USCM Theoretical First UNIT (TFU) cost , SME -SMAD pg 299...

table 9

payloadcost_USCM_TFU =0.4* payloadcost_NICM (1); % 40% NICM recurring

55 Spacecraftcost_USCM_TFU =289.5* Spacecraftdrymass (1) ^.716;

IAT_USCM_TFU =.124*( Spacecraftcost_USCM_TFU+payloadcost_USCM_TFU);

ProgramLevel_USCM_TFU =.320*( payloadcost_USCM_TFU+...

Spacecraftcost_USCM_TFU+IAT_USCM_TFU);

LOOS_USCM_TFU =5850; %Launch & Orbital Operations Support (LOOS)%

60 TotalCost_USCM_TFU=payloadcost_USCM_TFU+Spacecraftcost_USCM_TFU...

+...

IAT_USCM_TFU+ProgramLevel_USCM_TFU+LOOS_USCM_TFU;

c(1)=TotalCost_USCM_TFU;

65

%Calculate SSCM Non -Recurring Engineering (NRE) cost , SME -SMAD 301...

table 11

% Percentages from historical values , old SMAD 799

% "SSCM does not distinguish between non -recurring and recurring...

cost , as

70 % is done in USCM8 , and so these CERs predict the aggregate of
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% non -recurring and recurring costs" SME -SMAD 299

Spacecraftcost_SSCM =1064+35.5*( Spacecraftdrymass (2))^1.261;

payloadcost_SSCM =.4* Spacecraftcost_SSCM;

IAT_SSCM =.139* Spacecraftcost_SSCM;

75 ProgramLevel_SSCM =.229* Spacecraftcost_SSCM;

GSE_SSCM =.066* Spacecraftcost_SSCM;

LOOS_SSCM =.061* Spacecraftcost_SSCM;

TotalCost_SSCM_NRE=Spacecraftcost_SSCM *.6+ payloadcost_SSCM *.6+...

IAT_SSCM *0+...

80 ProgramLevel_SSCM *.5+ GSE_SSCM *1+ LOOS_SSCM *0;

C(2)=TotalCost_SSCM_NRE;

%Calculate SSCM Recurring Engineering cost

85 TotalCost_SSCM_TFU=Spacecraftcost_SSCM *.4+ payloadcost_SSCM *.4+...

IAT_SSCM *1+...

ProgramLevel_SSCM *.5+ GSE_SSCM *0+ LOOS_SSCM *1;

c(2)=TotalCost_SSCM_TFU;

90 Cost =0;

for n=1: types

Cost = Cost+c(n)*nsats(n)+C(n)*z(n); % satellite cost

end

95 % % QuickCost Model

% %****************** REFERENCES...

**********************************************

% Ao =[.18 ,.406]; %( Initial ref sensor aperature diameter)-table ...

17-7 pg 510 [multispect midIR/imaging spectoral ,thematic mapper...

]

% Wo =[250 ,400]; %Weight in kg of reference payloads (multispec ...

midIR is 270)

% Po =[225 ,600]; % Ref power , W (170)
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100 % dro =[2 ,75]; % Ref data rate , Mbps (8)

% ...

%**************************************************************************...

% types=numel(x)/nvars;

% for n=1: types % n refers to sat type

% nsats(n)=x(n*nvars -nvars +1);

105 % diam(n)=x(n*nvars);

%

% if nsats(n) >0 z(n)=1; else z(n)=0; end

%

% %system sizing summary

110 % Ai(n)=diam(n); %(New instrument aperture diameter) - sec ...

17.2.6 pg 516

%

% R(n)=Ai(n)/Ao(1); %Sizing Ratio , imaging spectoral p/l

% if R(n) <.5; K(n)=2; else K(n)=1; end

% Wi(n)=K(n)*R(n)^3*Wo(1); % design sensor mass (kg)

115 % Pi(n)=K(n)*R(n)^3*Po(1); % design sensor power (W)

% Spacecraftdrymass(n)=(Wi(n)/.31); %Table 14-18 pg 422, LEO w...

/ prop

%

% M(n)=Wi(n)+Spacecraftdrymass(n); % dry mass instruments + s/...

c

% D=0.5; % Percentile relative to state -of-the -art data rate; ...

average

120 % L=12; % Design life in months

% N=0.3; % Percent new technology; simple Mod

% Planetary =0; % Earth -orbiting mission

% Y=2010; % Assume program authority to proceed in 2010

% Complex =0.5; % Instrument complexity percentile; average

125 % T=2; % Team experience; Mixed

%

% C(n)=2.829*M(n)^0.457* Pi(n)^0.157* 2.718^(0.171*D)* ...

2.718^(0.00209*L)* 2.718^(1.52*N)*...
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% 2.718^(.258* Planetary)* 1/(2.718^(.0145*(Y -1960)))* ...

2.718^(.467* Complex)*1/(2.718^(.237*T));

% end

130 % Cost=sum(C);

report=fopen(’data.txt’,’a’);

fprintf(report ,’Cost: %d\n\n’,Cost);

fclose(report);

Listing D.4: Appendix1/constraint.m

1 % Disaggregated Space System Optimization constraint function

function [G, ceq] = constraint(x)

% x = [ 3 1 180 200 1e-6 98.6 0 0 20 ...

.2;

6 % 7 1 180 200 1e-6 98.6 0 0 20 ...

.05]

x

[cov ,niir ,rev]= gascenario(x)

con=[cov ,niir ,rev];

11 ceq = [];

G = [-con +[95 ,3* ones (1 ,25) ,0],...% constrained to >95% of targets ,...

NIIRS >3 (ref45 ,47), revisit >0min

con -[101 ,20* ones (1,25) ,10]] % constrained to <101% of targets ...

(impossible), NIIRS <100 (impossible), revisit <60min

IterX=x;

16 save(’IterX.mat’,’IterX’)

Listing D.5: Appendix1/Sensor performance.m

% Sensor performance calculation

function NIIRS=Sensor_performance(alt ,diam ,close_range)

% Replace altitude with closest approach slant range to get NIIRS ...

for
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4 % individual targets

global angles

% %% For Example Use

% clear;clc;

9 % alt =[450 ,450];

% diam =[0.2 ,0.5];

% close_range =450;

%% *************** REFERENCES...

************************************************

14 % Declare relevant constants

% IAmax=deg2rad (70); %IA max is equivalent to max incidence angle

% radiusofearth =6378.1366; %radius of earth (RE) in km from SMAD ...

pg173

% h=6.6256e-34; %Planck ’s constant , W*s^2

% c=3e8; % speed of light , m/s

19 delRho =0.08; % assumed delta reflectance (GIQE users guide , ...

RefWorks46)

rho =0.15; % assumed reflectance (GIQE users guide , RefWorks46)

K=1.63e-13; %electrons*photons ^-1*m^2*sr, assumed VNIR default ...

value of constant K for SNR , RefWorks46

% Sensor parameters

24 d=30E-6; %width of focal plane detector in meters; Teledyne ...

Imaging Sensors CHROMA Visible -Infrared Focal Plane Array

f=10; % meters; assumed focal length (same as Kestrel Eye , ...

RefWorks47)

Nm=256; %number of focal plane array pixels

lambda =.65E-6; %detector operating wavelenth (lambda) set at mean ...

wavelength for VNIR

29 %...

*************************************************************************...
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% KestrelEye (ref47)

% f=10m

% GSD =1.5m (nadir pointing)

% m=25kg

34 % alt =450km

%...

*************************************************************************...

for t=1: numel(close_range)

SlantRange = close_range(t)*1000;

39 for n=1: numel(alt)

% Determine GSD (validated with KestrelEye stats)

psi(n)=acos(alt(n)*1000/ SlantRange);

GSD(n)=SlantRange *(d/f)/sqrt(cos(psi(n)));

44 % Determine Optical Q // Unused ???

Q=(f*lambda/diam(n))/d; % optical Q, RefWorks46; IFOV=d/f ...

-> Q=lamb/D/IFOV

% Determine RER using MTF

% *Assume no jitter , smear , or wavefront aberration

49 Xsampling=f/d;

%MTFsampling=sin(pi*X)/(pi*X);

% *Assume circular aperture , no obscuration

Xdiffraction=diam(n)/lambda;

q=Xsampling/Xdiffraction; % ratio of sampling to diff ...

cutoff frequency

54 %MTFdiffraction =(2/pi)*(acos(X/q) -(X/q)*sqrt(1-(X/q)^2)); ...

% normalized on sampling MTF

%MTFsystem =(sin(pi*X)/(pi*X))*((2/ pi)*(acos(X/q) -(X/q)*...

sqrt(1-(X/q)^2))); % MTFsystem=MTFsampling*...

MTFdiffraction
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% func=@(X)(((sin(pi*X)./(pi*X)).*((2/ pi)*(acos(X/q) -(X/q)...

.*sqrt(1-(X/q).^2))))).*( sin(pi.*X)/(pi.*X));

% RER=abs(2* integral(func ,0,1/q));

59

% Determine H as peak value of ER over zeta =1:3, or 1.25 ...

if

% monotonical increase

z=0;

for zeta =1:.01:3

64 z=z+1;

func2=@(X)(((sin(pi.*X)./(pi.*X)).*((2/ pi).*( acos(X/q)...

-(X/q).*sqrt(1-(X/q).^2))))./X).*sin (2*pi*X*zeta);

ER(z)=.5+1/ pi*integral(func2 ,0,1/q);

end

if ER(z)-ER(z-50)==ER(z-75)-ER(z -125) % monotonically ...

increases

69 H(n)=abs(ER(125));

else

H(n)=abs(max(ER));

end

74 zeta =0.5; func2=@(X)((( sin(pi.*X)./(pi.*X)).*((2/ pi).*( acos...

(X/q) -(X/q).*sqrt(1-(X/q).^2))))./X).*sin(2*pi*X*zeta);

ERplus =.5+1/ pi*integral(func2 ,0,1/q);

zeta =-0.5; func2=@(X)((( sin(pi.*X)./(pi.*X)).*((2/ pi).*(...

acos(X/q)-(X/q).*sqrt(1-(X/q).^2))))./X).*sin (2*pi*X*...

zeta);

ERminus =.5+1/ pi*integral(func2 ,0,1/q);

RER(n)=abs(ERplus -ERminus);

79

% Determine SNR

Ti =0.001; % integration time; conservative estimate from ...

ref46

% R_s=integral(@(lamb)lamb/(h*c)*(Ldir+Ldiff) ,.4,.9); %Vis...

range
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% R_h=integral(@(lamb)lamb/(h*c)*(Lpath) ,.4,.9); %Vis ...

range

84 % Assuming Sun and sensor are both directly overhead , ...

approximating

% data from ref46:

R_s =0.5*(0.9 -0.4) *(1.35e21 -6e20)+(0.9 -0.4)*6e20;

R_h =0.5*(0.9 -0.4) *2e20;

SNR(n)=delRho*R_s/sqrt(rho*R_s+R_h)*sqrt(K*Ti);

89

% Determine G

% Determine G

G(n)=10.66; % mean value , rochester.edu source (ref56)

% Inaccurate conservative estimate is SNR/2, ref46

94

% GIQE 4 coefficients , metric units (RER <.9), ref46

c0 =5.205; c1= -3.16;c2 =2.817; c3= -.656;c4= -.344;

99

NIIRS(n) = c0+c1*log(GSD(n))+c2*log(RER(n))+c3*H(n)+c4*G(n...

)/SNR(n); % NIIRS for target t by sensor n

IFOV=d/f; % instantaneous field of view in radians , ref46

FOV(n)=IFOV*Nm;

104 end

NIIRS(t)=max(NIIRS); % best NIIRS achievable by any satellite ...

during scenario

fov(t,:)=rad2deg ([FOV(1),FOV(2)]);

end

% [alt diam close_range]

109 % NIIRS

% Design angles [ conic ha elevation ]

angles= [ max(fov(:,1))/2 90; % big

max(fov(:,2))/2 90]; % small
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114 %%% ELEVATION IS DEFINED AS: %%%%%%%%%%%%%%%%%%%%

% 90 DEG POINTS NADIR %

% 0 DEG POINTS OUT TO SPACE (SIDEWAYS) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119 end

Listing D.6: Appendix1/gascenario.m

1 function [Coverage ,NIIRS ,max_revisit] = gascenario(x)

% User should check scenario settings , and enter Walker ...

constellation

% details. User must also enter number of satellites per ...

constellation

% below the Walker section , so that they can be added to the ...

coverage

% computation. Currently this assumes same number of small sats as...

large

6 % sats.

% Date: 27 Nov 2013

% Input x vector , output percent coverage

11 % Note: clear all causes the MEX link to close

global nvars ntargets

error =0;

%% Scenario Settings

% User input /// Uncomment this section for independent use

16 % x = #planes #sats/plane truanom RAANinc / alt e i om ...

w M / diam

%******************** change inputs to variables...

**************************

types=numel(x)/nvars;

% 6 Satellite IC’s: [ a e i ...

omega w M ]

for n=1: types
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21 COE(n*6-5:n*6) = x(n*nvars -nvars +5:n*nvars -nvars +10) +[6378.137...

0 0 0 0 0];

% Walker parameters

nplanes(n)=x(n*nvars -nvars +1); % planes

nspp(n)=x(n*nvars -nvars +2); % sats/plane

nsats(n)=nplanes(n)*nspp(n); % sats

26 truan(n)=x(n*nvars -nvars +3); % true anomaly spread

RAANinc(n)=x(n*nvars -nvars +4); % walker raaninc

% Sensor diameter

diam(n) = x(n*nvars);

end

31

%...

*************************************************************************...

% %% Compute sensor angles (included for information only - angles...

are

% assumed in this program)

36 % IAmax =[1.221 ,.0872]; %IA max is equivalent to max incidence ...

angle

% radiusofearth =6378140; %radius of earth (RE) in meters (14 SMAD ...

pg977)

% Nm=[256 256]; %number of focal plane array pixels

% ymax =68;

% for n=1: types

41 % angularradiusofearth(n)=asin(radiusofearth /( radiusofearth+x(...

n*nvars -nvars +5) *1000));

% % ang rad of earth (rho) (14 SMAD eq 5-24 pg ...

113)

% spacecraftelevationangle(n)=((pi/2)-IAmax(n)); %min ...

elevation angle in rads (Epsilon)

% nadirangle(n)=asin(cos(spacecraftelevationangle(n))*sin(...

angularradiusofearth(n)));
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% earthcentralangle(n)=(pi/2)-nadirangle(n)-...

spacecraftelevationangle(n);

46 % Rs(n)=radiusofearth *(sin(earthcentralangle(n))/sin(...

nadirangle(n))); %Slant Range (Rs)in kilometers

% IFOV(n)=ymax/Rs(n); %instantaneous field of view in degrees

% FOV(n)=IFOV(n)*Nm(n);

% end

% % Design angles [ con h-a elevation ]

51 % % /// These should simply be calculated in each program that ...

needs them ///

% angles = [ ((FOV(1))/2) 90; % big

% ((FOV(2))/2) 90] % small

% %%% ELEVATION IS DEFINED AS: %%%%%%%%%%%%%%%%%%%%

% % 90 DEG POINTS NADIR %

56 % % 0 DEG POINTS OUT TO SPACE (SIDEWAYS) %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%...

*************************************************************************...

%% Initialize STK and generate scenario components

61 path=’I:\My Documents\THESIS\STK_Matlab\Imager\Matlab \180 minute\...

TargetDeck.sc’;

[uiapp , root] = STK.OpenScen(path);

%Hide STK and do the analysis

uiapp.Visible = 0;

for n=1: ntargets

66 target(n)=root.CurrentScenario.children.Item(strcat(’target ’,...

num2str(n)));

end

% Satellite constellation

constellation=root.CurrentScen.Children.New(’eConstellation ’,’...

Imager ’);

71 % Create sats
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for n=1: types

if nsats(n)==0;

else

sat(n) = STK.create_sat(strcat(num2str(n),’...

thType ’),root ,COE(n*6-5:n*6));

76 % Create conic imaging sensors

fixed(n) = STK.create_sensor(strcat(num2str(n),’...

thSensor ’), sat(n), 1, [10 ,90]); % angles are conic h/a...

, el

eye(n) = STK.create_sensor(strcat(num2str(n),’...

thSensorEye ’), sat(n), 1, [.2807 ,90]); % 1 specifies ...

conic

slew=eye(n).AccessConstraints.AddNamedConstraint(’...

AngularRate ’);

slew.EnableMax =1; slew.Max =1; % Angular rate constraint 1 ...

deg/sec max slew

81 % Add reconnaissance characteristics -> http ://www.agi.com...

/downloads/training/manuals/Fundamentals.pdf

eye(n).CommonTasks.SetPointingTargetedTracking (2,1,strcat(...

’*/ Target/target1 ’));

for m=2: ntargets

eye(n).Pointing.Targets.Add(strcat(’*/ Target/target ’,...

num2str(m)));

end

86 eye(n).Pointing.EnableAccessTimes =0;

try

eye(n).Pointing.ScheduleTimes.Deconflict;

catch

error =91;

91 end

end

end

% Create Walker constellation from seed satellite

105



96 % Command inputs: Walker <SatObjectPath > [{ WalkerType }] <NumPlanes ...

> <NumSatsPerPlane > {<InterPlaneSpacing > | <TrueAnomaly >} <...

RAANSpread > {ColorByPlaneFlag} [{ AdditionalOptions }]

% Use Walker type ModDelta to enter True Anomaly instead of ...

Interplane Spacing

for n=1: types

if nsats(n)==0

else

101 if nsats(n)>1 % only use Walker function for 2 or more ...

sats

string=horzcat(’Walker */ Satellite/’,num2str(n),’...

thType ModDelta ’,num2str(nplanes(n)),’ ’,num2str(...

nspp(n)),’ ’,num2str(truan(n)),’ ’,num2str(RAANinc(...

n)),’ Yes’);

root.ExecuteCommand(string);

% Keep things simple - stay UNDER 10 planes , 10 sats (...

need to

% adjust for 10 spp)

106 for p=1: nplanes(n)

for m=1: nspp(n)

path1=horzcat(’Satellite/’,num2str(n),’thType ’...

,num2str(p),num2str(m),’/Sensor/’,num2str(n...

),’thSensorEye ’);

path2=horzcat(’Satellite/’,num2str(n),’thType ’...

,num2str(p),num2str(m),’/Sensor/’,num2str(n...

),’thSensor ’);

try

111 constellation.Objects.Add(path1);

constellation.Objects.Add(path2);

catch

error =111;

end

116 end

end

else
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string1=horzcat(’Satellite/’,num2str(n),’thType/Sensor...

/’,num2str(n),’thSensor ’);

string2=horzcat(’Satellite/’,num2str(n),’thType/Sensor...

/’,num2str(n),’thSensorEye ’);

121 constellation.Objects.Add(string1);

constellation.Objects.Add(string2);

for n=1: ntargets

Cov=horzcat(’Cov */ Target/target ’,n,’ Asset */’,...

string2 ,’ Assign ’);

try

126 root.ExecuteCommand(Cov);

catch

error =129;

end

end

131 end

end

end

%% Determine figures of merit

136 go=0;

if sum(nsats)>0

m=1;

for n=1: ntargets

% Slant range (and access boolean)

141 cov=target(n).ObjectCoverage;

cov.Assets.Add(’Constellation/Imager ’);

cov.FOM.SetAccessConstraintDefinition (20); % access ...

constraint , range

cov.FOM.Definition.AcrossAssets=’eFmMinimum ’;

cov.FOM.Definition.SetComputeType(’eMinimum ’);

146 cov.Compute;

stuff=root.ExecuteCommand(strcat(’Cov_RM */ Target/target ’,...

num2str(n),’ Access Compute "FOM Value"’));

range_file=fopen(’range.txt’,’w+’);
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for k=0: stuff.Count -1; fprintf(range_file ,’%s\n’,stuff.Item...

(k));end

range_data=importdata(’range.txt’,’,’ ,8);

151 if numel(range_data)<3

list=find(range_data.data ~=0);

if numel(list)>0

close_range(n)=min(range_data.data(list));

index_close(n)=find(range_data.data== close_range(n...

));

156 close_range_time(n)=range_data.textdata (8+...

index_close(n));

far_range(n)=max(range_data.data);

index_far(n)=find(range_data.data== far_range(n) ,1)...

;

far_range_time(n)=range_data.textdata (8+ index_far(...

n));

fclose(’all’);

161 no_access =[];

go=1;

else

close_range(n)=inf;

far_range(n)=inf;

166 end

else

disp(strcat(’No access for target ’,num2str(n)));

no_access(m)=n;

close_range(n)=inf;

171 far_range(n)=inf;

m=m+1;

end

% Revisit time (should have longer scenario time than ~8 ...

hrs)

cov.FOM.SetDefinitionType (10); %revisit time

176 cov.Compute;
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stuff=root.ExecuteCommand(strcat(’Cov_RM */ Target/target ’,...

num2str(n),’ Access Compute "FOM Value"’));

revisit_file=fopen(’revisit.txt’,’w+’);

for k=0: stuff.Count -1; fprintf(revisit_file ,’%s\n’,stuff....

Item(k));end

try

181 revisit(n)=importdata(’revisit.txt’,’,’ ,8);

gap(n)=max(revisit(n).data);

catch

gap(n)=0;

end

186 fclose(’all’);

end

%% Percent coverage for targets

191 if go==1

Coverage =100*( ntargets -numel(no_access))/ntargets;

max_revisit=max(gap)/60;

time=clock;

196 report=fopen(’data.txt’,’a’);

fprintf(report ,’Time: %d-%d-%d %d:%d:%d\n’,time);

fprintf(report ,’Design vector: %2.0f %2.0f %3.3f %3.3f ...

%4.3f %1.3f %3.3f %3.3f %3.3f %3.3f %1.3f]\n’,x);

fprintf(report ,’ Max Revisit Time (min) %3.3f\n’,...

max_revisit);

fprintf(report ,’ Max Range %3.3f\n’,max(far_range));

201 fprintf(report ,’ Min Range %3.3f\n’,min(close_range(find(...

close_range ~=0))));

fprintf(report ,’ Target Coverage (percent) %3.3f\n’,...

Coverage);

fprintf(report ,’Error =%1.0f\n\n’,error);

fclose(’all’);

else
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206 Coverage =0;

max_revisit=inf;

end

else

close_range=inf(1,ntargets);

211 Coverage =0;

max_revisit=inf;

end

%% Sensor performance calculation

216 % Replace altitude with closest approach slant range to get NIIRS ...

for

% individual targets

for n=1: types

alt(n) = x(n*nvars -nvars +4) *1000; % alt in meters

diam(n) = x(n*nvars);

221 end

NIIRS=Sensor_performance(alt ,diam ,close_range);

end

D.2 STK Library

Listing D.7: Appendix1/STK.m

classdef STK

2 %%STK Library created by James Sales

%

% This library serves as a conduit between STK and MATLAB. It is ...

generally

% geared towards my specific research but has been designed to be ...

useful

% elsewhere for the most part. Below is a list of the structure ...

fields

7 % used in the various functions defined in this library.

%

% Scen Structure Fields:
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% Centroid: The Lattitude , Longitude , and Elevation of...

the

% desired ellipse for an Area Target.

12 % COE: The Initial State Classical Orbital ...

Elements

% formatted as follows:

% [r_p e i RAAN w nu]

% the Radius of Periapsis is in kilometers ...

and all

% angles are in degrees.

17 % ElevAngle: Minimum Elevation Angle for Access to ...

satellite.

% EndTime: The Scen end time formatted as follows:

% ’DD MMM YYYY HH:MM:SS’

% EngineName: String for the desired engine name.

% Epoch: The Epoch time formatted as follows:

22 % ’DD MMM YYYY HH:MM:SS’

% m_sat: The satellite dry mass in kg.

% m_fuel: The fuel mass in kg.

% Now: Tracks time from Epoch to current maneuver...

in

% seconds.

27 % Path: The filepath for external file storage.

% Prop: The desired propagation engine.

% Size: The semi -major axis , semi -minor axis , and ...

bearing

% formatted as a vector for the desired ...

ellipse for

% an Area Target.

32 % StartTime: The Scen start time formatted as follows:

% ’DD MMM YYYY HH:MM:SS’

% TimeStep: Animation increment given in seconds.

% Title: A string describing the desired Scen title...

.

% This string must contain no spaces.
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37 methods(Static)

function [uiapp , root] = Initialize(Scen)

% This function initializes STK and passes back the ...

applicable handles for

% further use in MATLAB. The function takes the following...

inputs:

%

42 % [uiapp , root] = STK.Initialize(Scen)

%% Grab STK handle if already running or open STK if not

try

uiapp = actxGetRunningServer(’STK10.application ’);

47 catch

uiapp = actxserver(’STK10.application ’);

end

root = uiapp.Personality2;

%% Close existing Scen and open a new one

52 try

root.CloseScenario;

root.NewScenario(Scen.Title);

catch

root.NewScenario(Scen.Title);

57 end

%% Set Scen Preferences

% Set Date/Time Format

root.UnitPreferences.Item(’DateFormat ’).SetCurrentUnit(’...

UTCG’);

% Assign Scen time period

62 scen = root.CurrentScen;

scen.SetTimePeriod(Scen.StartTime ,Scen.EndTime);

scen.Animation.StartTime = Scen.StartTime;

scen.Epoch = Scen.StartTime;

scen.Animation.AnimStepValue = Scen.TimeStep;

67 %% Set Animation to Start Time

root.Rewind ()
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end

function [uiapp , root] = OpenScen(path)

72 % This function initializes STK and passes back the ...

applicable handles for

% further use in MATLAB of an existing scenario.

% The function takes the following inputs:

%

% [uiapp , root] = STK.Initialize(path)

77

%% Grab STK handle if already running or open STK if not

try

uiapp = actxGetRunningServer(’STK10.application ’);

catch

82 uiapp = actxserver(’STK10.application ’);

end

root = uiapp.Personality2;

%% Close existing Scen and open a new one

try

87 root.CloseScenario;

root.LoadScenario(path);

catch

root.LoadScenario(path);

end

92 %% Set Animation to Start Time

root.Rewind ()

end

function [sat] = create_sat(Name , root , COE)

97 % This function initializes a satellite in Astrogator and ...

returns the

% applicable handles for further use in MATLAB. It takes ...

the following

% inputs:

%
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% [sat] = create_sat(Name , root , COE)

102

%% Initialize Satellite

missionStartDate = root.CurrentScen.StartTime;

sat = root.CurrentScen.Children....

New(18, Name);

107 %% Define the Initial States

% Create handle to the Initial States

IS = sat.Propagator.InitialState;

% Input orbital elements

112 IS.Representation.AssignClassical(’eCoordinateSystemICRF ’...

,...

COE(1),COE(2),COE(3),COE(4),COE(5),COE(6));

% ^ See STK programming interface help , ...

AgECoordinateSystem Enumeration

% ICRF seems to be the default

117 % Sets the orbit Epoch for the mission start time

sat.Propagator.StartTime = ...

missionStartDate;

% Propagate satellite

sat.Propagator.Propagate

end

122

function [target] = create_target(Name , root , location)

% This function creates a target in the scenario at the ...

coordinates

% specified , of format:

% [lat ,long ,alt]

127

target=root.CurrentScen.Children.New(’eTarget ’,Name);

target.position.AssignGeodetic(location (1),location (2),...

location (3))
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end

132 function [sat , MCS] = Astrogator(Name , root , Scen)

% This function initializes a satellite in Astrogator and ...

returns the

% applicable handles for further use in MATLAB. It takes ...

the following

% inputs:

%

137 % [sat , MCS] = STK.Astrogator(Name , root , Scen)

%% Initialize Satellite

missionStartDate = root.CurrentScen.StartTime;

sat = root.CurrentScen.Children....

New(18, Name);

142 sat.SetPropagatorType(’ePropagatorAstrogator ’)

sat.Graphics.Attributes.Intervals.RemoveAll;

sat.Graphics.Attributes.Default.Inherit = 0;

sat.Graphics.Attributes.Default.IsOrbitVisible = 0;

% Create handle to the Astrogator portion of the satellite ...

’s object model

147 prop = sat.Propagator;

% Create handle to the MCS and remove all existing ...

segments

MCS = prop.MainSequence;

MCS.RemoveAll;

%% Define the Initial States

152 % Create handle to the Initial States

IS = MCS.Insert(’eVASegmentTypeInitialState ’,’Initial ...

State ’,’-’);

% Designate satellite and fuel masses

IS.SpacecraftParameters.DryMass = Scen.m_sat;

IS.FuelTank.FuelMass = Scen.m_fuel;

157 IS.FuelTank.MaximumFuelMass = Scen.m_fuel;

% Input orbital elements
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IS.SetElementType(’eVAElementTypeModKeplerian ’);

IS.Element.RadiusOfPeriapsis = Scen.COE (1);

IS.Element.Eccentricity = Scen.COE (2);

162 IS.Element.Inclination = Scen.COE (3);

IS.Element.RAAN = Scen.COE (4);

IS.Element.ArgOfPeriapsis = Scen.COE (5);

IS.Element.TrueAnomaly = Scen.COE (6);

% Sets the orbit Epoch for the mission start time

167 IS.OrbitEpoch = missionStartDate;

end

function [sat] = Create_Satellite_External(Name , root , path)

% This function initializes a satellite with an external ...

ephemeris

172 % file and returns the applicable handle for further use ...

in MATLAB.

% It takes the following inputs:

%

% sat = STK.Create_Satellite_External(Name , root , ...

path)

177 %% Initialize Satellite

sat = root.CurrentScen.Children....

New(18, Name);

sat.SetPropagatorType(’ePropagatorStkExternal ’);

%% Specify filepath for ephemeris file

prop = sat.Propagator;

182 prop.filename = path;

%% Propagate satellite

prop.Propagate;

end

187 function [Target] = Area_Target(Name , root , Scen)

% This function initializes an Area Target in STK and ...

returns the
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% applicable handles for further use in MATLAB. It takes ...

the following

% inputs:

%

192 % Target = STK.Area_Target(Name , root , Scen)

Size = Scen.Size;

Centroid = Scen.Centroid;

Target = root.CurrentScen.Children.New(2, Name);

197 Target.AreaType = ’eEllipse ’;

Target.AreaTypeData.SemiMajorAxis = Size (1);

Target.AreaTypeData.SemiMinorAxis = Size (2);

Target.AreaTypeData.Bearing = Size (3);

Target.Position.AssignGeodetic(Centroid (1),Centroid (2),...

Centroid (3));

202 Target.AccessConstraints.AddNamedConstraint(’...

ElevationAngle ’);

Target.AccessConstraints.GetActiveNamedConstraint(’...

ElevationAngle ’).Angle = Scen.ElevAngle;

end

function [coverage] = coverage_definition(Name , root)

207 % This function initializes a coverage definition in STK ...

and returns the

% applicable handles for further use in MATLAB. It takes ...

the following

% inputs:

%

% coverage = STK.coverage_definition(Name , root)

212

coverage = root.CurrentScen.Children.New(’...

eCoverageDefinition ’, Name);

coverage.Grid.BoundsType = ’eBoundsGlobal ’;

end
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217

function [FOM] = create_FOM(Name , coverage)

% This function initializes a FOM definition in STK and ...

returns the

% applicable handles for further use in MATLAB. It takes ...

the following

% inputs:

222 %

% FOM = STK.create_FOM(Name , coverage)

FOM = coverage.Children.New(’eFigureOfMerit ’, Name);

227 end

function [sensor] = create_sensor(Name , sat , type , angle)

% This function initializes a RECTANGULAR sensor object ...

in STK and returns the

% applicable handles for further use in MATLAB. It takes...

the following

232 % inputs:

%

% sensor = STK.create_sensor(Name , sat , type , angle...

)

%

% Type:

237 % 1 = simple conic

% angle should be 1x2 vector , in deg

% [ conic half angle , nadir angle ]

%

% 2 = rectangular

242 % angle should be 1x3 vector in degrees ...

formatted:

% vertical halfangle , horizontal halfangle , ...

nadir angle
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% This section can be updated to include other types of ...

sensor

% characteristics; this is specifically for the GA ...

scenario

247 % -2Lt Evelyn Abbate , 4 Oct 2013

sensor = sat.Children.New(’eSensor ’, Name);

switch type

252 case 1

sensor.Pattern.ConeAngle=angle (1);

sensor.FocalLength =10;

sensor.CommonTasks.SetPointingFixedAzEl (0,angle...

(2) ,1);

case 2

257 sensor.SetPatternType (3);

sensor.Pattern.VerticalHalfAngle=angle (1);

sensor.Pattern.HorizontalHalfAngle=angle (2);

sensor.CommonTasks.SetPointingFixedAzEl (0,angle...

(3) ,1);

end

262 end

function [Eng] = Create_Engine_Model(root , Name , T)

% This function creates a custom engine model in the ...

Componant Library and

267 % returns the applicable handle for further use in MATLAB....

It takes the

% following inputs:

%

% Eng = STK.CreateEngingModel(root , Name , T)

272 scen = root.CurrentScen;
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EM = scen.ComponentDirectory.GetComponents(’...

eComponentAstrogator ’).GetFolder(’Engine Models ’);

ConstThrust = EM.Item(’Constant Thrust and Isp’);

ConstThrust.CloneObject;

num = EM.count;

277 for count = 0:num -1

if length(EM.Item(count).Name) > 23

if strcmp(EM.Item(count).Name (1:24) ,’Constant ...

Thrust and Isp1’)

Eng = EM.Item(count);

end

282 end

end

Eng.Name = Name;

Eng.Thrust = T;

end

287

function [prop] = Propagate(Name , t, MCS , Scen)

% This function adds a propagation step to the given ...

satellite in

% Astrogator and returns the applicable handle for further...

use in MATLAB.

% It takes inputs as follows:

292 %

% prop = STK.Propagate(Name , t, MCS , Scen)

prop = MCS.Insert(’eVASegmentTypePropagate ’,Name ,’-’);

prop.PropagatorName = Scen.Prop;

297 prop.StoppingConditions.Item(’Duration ’).Properties.Trip =...

t;

end

function [AccessTimes] = Compute_Access(root , sat , target , ...

clock)
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% This function takes two handles and computes coverage ...

encounters over

302 % the entire Scen. It takes the following inputs:

%

% AccessTimes = STK.Compute_Access(root , sat , target ...

, count)

root.UnitPreferences.Item(’DateFormat ’).SetCurrentUnit(’...

EpSec ’);

307 scen = root.CurrentScen;

access = target.GetAccessToObject(sat);

access.ComputeAccess;

DP = access.DataProviders.Item(’Access Data’).Exec...

(scen.StartTime , scen.StopTime);

Enter = cell2mat(DP.DataSets.GetDataSetByName(’Start ...

Time’).GetValues);

312 Depart = cell2mat(DP.DataSets.GetDataSetByName(’Stop ...

Time’).GetValues);

for count = 1:min(length(Enter),length(Depart))

Entry(count ,:) = RO.Time_Sequencer(clock , Enter(count)...

);

Exit(count ,:) = RO.Time_Sequencer(clock , Depart(count)...

);

Spaces(count ,:) = ’ ’;

317 end

AccessTimes.DT = [Entry Spaces Exit];

AccessTimes.EpSec = [Enter Depart ];

end

322 function [t_end] = Output_to_text(Scen , Out , L, CoastTime)

% This function generates a text file conforming to the ...

Astrogator *.a

% thrust attitude external file input parameters. It ...

takes inputs as

% follows:
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%

327 % t_end = STK.Out_to_text(Scen , Out , L, CoastTime)

%

% Out Structure Fields:

% length: length of the time vector

% t: The time vector in seconds

332 % ECI: The Earth -Centered Inertial ...

attitude vector

Filename = [Scen.Path ,Scen.Title ,’Profile ’,num2str(count),...

’.a’];

t = Out.t+Scen.Now;

t_end = Out.t(end)-CoastTime+Scen.Now;

337 ECI = Out.ECI;

Epoch = Scen.Epoch;

Maneuver = [t ECI]’;

Points = length(t)-L;

Factor = 20;

342 Order = 1;

Body = ’Earth’;

Axes = ’Inertial ’;

% Open file & begin writing data conforming to the STK ...

format requirements.

FID = fopen(Filename ,’w’);

347 fprintf(FID ,’stk.v.5.0\r\n \r\n’);

fprintf(FID ,’BEGIN Attitude\r\n \r\n’);

fprintf(FID ,’NumberOfAttitudePoints\t%1.0f\r\n’,Points);

fprintf(FID ,[’Scen Epoch\t\t’,Epoch ,’\r\n’]);

fprintf(FID ,’Blocking Factor\t\t%2.0f\r\n’,Factor);

352 fprintf(FID ,’InterpolationOrder\t%1.0f\r\n’,Order);

fprintf(FID ,[’CentralBody\t\t’,Body ,’\r\n’]);

fprintf(FID ,[’CoordinateAxes\t\t’,Axes ,’\r\n\r\n’]);

fprintf(FID ,’AttitudeTimeECIVector\r\n\r\n’);

fprintf(FID ,’\t%6.6f \t\t%8.8f \t\t%8.8f \t\t%8.8f \r\n’,...

Maneuver(:,L+1:end));
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357 fprintf(FID ,’\r\nEND Attitude ’);

fclose(’all’);

end

function [] = Maneuver_From_File(Name , MCS , t, Scen , index)

362 % This function conducts a Finite Thrust Vectored manuever...

in Astrogator

% and returns the applicable maneuver handle for further ...

use in MATLAB.

% It takes inputs as follows:

%

% STK.Maneuver_From_File(Name , MCS , t, Scen , index)

367

Filename = [Scen.Path ,Scen.Title ,’Profile ’,num2str(index),...

’.a’];

M = MCS.Insert(’eVASegmentTypeManeuver ’,Name ,’-’);

M.SetManeuverType(’eVAManeuverTypeFinite ’);

M.Maneuver.SetAttitudeControlType(’eVAAttitudeControlFile ’...

);

372 Att_Control = M.Maneuver.AttitudeControl;

Att_Control.Filename = Filename;

M.Maneuver.SetPropulsionMethod(’...

eVAPropulsionMethodEngineModel ’, Scen.EngineName);

M.Maneuver.Propagator.StoppingConditions.Item(’Duration ’)....

Properties.Trip = t;

M.Maneuver.Propagator.PropagatorName = Scen.Prop;

377 end

function [] = FTV_Maneuver(Name , MCS , v, t)

% This function conducts a Finite Thrust Vectored manuever...

in Astrogator

% and returns the applicable maneuver handle for further ...

use in MATLAB.

382 % It takes inputs as follows:

%
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% STK.FTV_Maneuver(Name , MCS_root , Vector , Duration)

global Scen

387 M = MCS.Insert(’eVASegmentTypeManeuver ’,Name ,’-’);

M.SetManeuverType(’eVAManeuverTypeFinite ’);

M.Maneuver.SetAttitudeControlType(’...

eVAAttitudeControlThrustVector ’);

Att_Control = M.Maneuver.AttitudeControl;

Att_Control.ThrustVector.AssignXYZ(v(1),v(2),v(3));

392 M.Maneuver.SetPropulsionMethod(’...

eVAPropulsionMethodEngineModel ’, Scen.EngineName);

M.Maneuver.Propagator.StoppingConditions.Item(’Duration ’)....

Properties.Trip=t;

M.Maneuver.Propagator.PropagatorName = Scen.Prop;

end

397 function [] = ITV_Maneuver(Name , MCS , v)

% This function conducts an Impulsive Thrust Vectored ...

manuever in

% Astrogator and returns the applicable maneuver handle ...

for further use in

% MATLAB. It takes inputs as follows:

%

402 % STK.ITV_Maneuver(Name , MCS , Vector)

M = MCS.Insert(’eVASegmentTypeManeuver ’,Name ,’-’);

M.Maneuver.SetAttitudeControlType(’...

eVAAttitudeControlThrustVector ’);

Att_Control = M.Maneuver.AttitudeControl;

407 Att_Control.DeltaVVector.AssignCartesian(v(1),v(2),v(3));

end

function [t, Elem] = Elements(sat , time , Type)

% This function takes a satellite and returns its orbital ...

element time
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412 % history. It takes the following inputs:

%

% [t, Elem] = STK.Elements(sat , time , Type)

root = sat.root;

417 root.UnitPreferences.SetCurrentUnit(’DateFormat ’,’EpSec’);

if Type == ’E’

EE = sat.DataProviders.Item(’Equinoctial ...

Elements ’);

EEICRF = EE.Group.Item(’ICRF’);

EEResults = EEICRF.Exec(time (1), time (2), 20);

422 t = cell2mat(EEResults.DataSets.GetDataSetByName(’Time...

’).GetValues ());

a = cell2mat(EEResults.DataSets.GetDataSetByName(’Semi...

-Major Axis’).GetValues ());

h = cell2mat(EEResults.DataSets.GetDataSetByName(’e * ...

sin(omegaBar)’).GetValues ());

k = cell2mat(EEResults.DataSets.GetDataSetByName(’e * ...

cos(omegaBar)’).GetValues ());

p = cell2mat(EEResults.DataSets.GetDataSetByName(’tan(...

i/2) * sin(raan)’).GetValues ());

427 q = cell2mat(EEResults.DataSets.GetDataSetByName(’tan(...

i/2) * cos(raan)’).GetValues ());

F = cell2mat(EEResults.DataSets.GetDataSetByName(’Mean...

Lon’).GetValues ());

Elem = [a h k p q F];

elseif Type == ’C’

COE = sat.DataProviders.Item(’Classical ...

Elements ’);

432 COEICRF = COE.Group.Item(’ICRF’);

COEResults = COEICRF.Exec(time (1),time (2) ,20);

t = cell2mat(COEResults.DataSets.GetDataSetByName(’...

Time’).GetValues ());

a = cell2mat(COEResults.DataSets.GetDataSetByName(’...

Semi -major Axis’).GetValues ());
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e = cell2mat(COEResults.DataSets.GetDataSetByName(’...

Eccentricity ’).GetValues ());

437 i = cell2mat(COEResults.DataSets.GetDataSetByName(’...

Inclination ’).GetValues ());

omega = cell2mat(COEResults.DataSets.GetDataSetByName(...

’RAAN’).GetValues ());

w = cell2mat(COEResults.DataSets.GetDataSetByName(’Arg...

of Perigee ’).GetValues ());

M = cell2mat(COEResults.DataSets.GetDataSetByName(’...

Mean Anomaly ’).GetValues ());

lat = cell2mat(COEResults.DataSets.GetDataSetByName(’...

Arg of Latitude ’).GetValues ());

442 nu = cell2mat(COEResults.DataSets.GetDataSetByName(’...

True Anomaly ’).GetValues ());

Elem = [a e i omega w M lat nu];

else

t = [];

Elem = [];

447 fprintf(’Specified Type not recognized\n’)

end

end

function [] = Export_Ephemeris(sat , Start , Stop , path)

452 % This function generates an ephemeris export file for the...

specified

% satellite. It takes the following inputs:

%

% STK.Export_Ephemeris(sat , Start , Stop , path)

%

457 % where sat is a handle specifying the satellite for which...

the

% ephemeris file is desired , Start and Stop designate the ...

start and

% stop times for the ephemeris file , and path designates ...

the filepath
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% for where this file is exported.

%

462 % Start and Stop should be a string formatted as follows:

%

% dd mmm yyyy hh:mm:ss

%

% Path should be formatted as a string and at a minimum ...

specify

467 % the desired filename ending in ’.e’. If no path is ...

specified ,

% the file will be exported to the default STK folder.

%% Get ephemeris handle

stkEphem = sat.ExportTools.GetEphemerisStkExportTool;

472 %% Specify time period

stkEphem.TimePeriod.TimePeriodType = ’...

eExportToolTimePeriodSpecify ’;

stkEphem.TimePeriod.Start = Start;

stkEphem.TimePeriod.Stop = Stop;

stkEphem.StepSize.StepSizeType = ’eExportToolStepSizeEphem...

’;

477 %% Export ephemeris file to designated location

stkEphem.Export(path);

end

end

end
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Appendix E. Genetic Algorithm Results

This Appendix contains the plots generated by the GA showing how the algorithm

closed in on solutions for the cheapest and fastest cases, and the associated popula-

tions.

E.1 Middle East Target Deck
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Figure E.1: Middle East Cheapest Solution. GA output plot for Middle East target deck

with 30 minute constraint. Actual revisit time is 79 minutes.
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Table E.1: Population and Scores for Cheapest Solution, Middle East Target Deck
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Figure E.2: Middle East Fastest Solution. GA output plot for Middle East target deck

with 15 minute constraint. Actual revisit time is 1.89 minutes.
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Table E.2: Population and Scores for Fastest Solution, Middle East Target Deck
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E.2 Ohio Target Deck
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Figure E.3: Ohio Cheapest Solution. GA output plot for Ohio target deck with 60 minute

constraint. Actual revisit time is 48.8 minutes.
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Table E.3: Population and Scores for Cheapest Solution, Ohio Target Deck
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Figure E.4: Ohio Fastest Solution. GA output plot for Ohio target deck with 20 minute

constraint. Actual revisit time is 12.9 minutes.
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Table E.4: Population and Scores for Fastest Solution, Ohio Target Deck

135



Bibliography

1. Taverney, T., “Resilient, Disaggregated, and Mixed Constellations,” Space Re-
view , 29 August 2011, pp. 15 September 2013, Accessed: 2013-09-15.

2. Burch, R., “OPS: Disaggregation + Diversification of U.S. MILSATCOM,”
https://www.milsatmagazine.com/story.php?number=510061234, April
2012, Accessed: 2013-10-07.

3. “Defense Acquisition Guidebook,” 16 Sep 2013, pp. 3.7.2.4, Accessed: 2013-01-02.

4. Wertz, J. R., Everett, D. F., and Puschell, J. J., Space Mission Engineering: The
New SMAD , Microcosm Press, Hawthorne, CA, 2011.

5. Brown, O. and Eremenko, P., “Fractionated Space Architectures: A Vision for
Responsive Space,” Tech. rep., Defense Advanced Research Projects Agency
(DARPA), Jan 2008.

6. Co, T. C., “Operationally Responsive Spacecraft Using Electric Propulsion,” 23
July 2012.

7. Co, T. C., Zagaris, C., and Black, J. T., “Responsive Satellites through Ground
Track Manipulation using Existing Technology,” Journal of Spacecraft and Rock-
ets , Vol. 50, No. 1, Jan. - Feb. 2013, pp. 206–216.

8. Co, T. C. and Black, J. T., “Responsiveness in Low Orbits using Electric Propul-
sion,” Journal of Spacecraft and Rockets , Accepted for publication Apr. 2013.

9. Pawlikowski, E., Loverro, D., and Cristler, T., “Space: Disruptive Challenges,
New Opportunities, and New Strategies,” Strategic Studies Quarterly , Spring
2012, pp. 27.

10. Brown, O. and Eremenko, P., “Application of Value-Centric Design to Space
Architectures: The Case of Fractionated Spacecraft,” AIAA, 2008.

11. AFSPC, “Resiliency and Disaggregated Space Architectures (White paper),”
2013.

12. Anhalt, D., “National Security Space Strategic Perspectives on Resilience in a
Cost Constrained Environment,” AIAA SPACE 2012 Conference, 2012.

13. Brown, O., Eremenko, P., and Roberts, C., “Cost-Benefit Analysis of a Notional
Fractionated SATCOM Architecture,” 24th AIAA International Communications
Satellite Systems Conference (ICSSC), 2006.

14. Tozer, J. L., “Untouchable: Fighting Forward in the Space,
Cyber Domains,” http://science.dodlive.mil/2013/09/20/

untouchable-fighting-forward-in-the-space-cyber-domains/, September
20, 2013, Accessed: 2013-10-07.

136



15. Gruss, M., “Shelton: Sequestration Could Break Military Space
Program,” http://www.spacenews.com/article/military-space/

37270shelton-sequestration-could-break-military-space-program,
September 17, 2013, Accessed: 2013-10-07.

16. Garamone, J., “Shelton Discusses Importance of Space Defense,” http://

www.defense.gov/news/newsarticle.aspx?id=121443, Jan 7, 2014, Accessed:
2013-01-08.

17. Jilla, C. D., A Multiobjective, Multidisciplinary Design Optimization Methodology
for the Conceptual Design of Distributed Satellite Systems , Massachusetts Insti-
tute of Technology, Department of Aeronautics and Astronautics, 2002, Accessed:
2013-10-02.

18. Horst, J. V. D., Noble, J., and Tatnall, A., “Robustness of market-based task
allocation in a distributed satellite system,” Proceedings of the 10th European
conference on Advances in artificial life: Darwin meets von Neumann - Volume
Part II , ECAL’09, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 334–341, Ac-
cessed: 2013-10-07.

19. Ferster, W., “DARPA Cancels Formation-Flying Satellite
Demo,” http://www.spacenews.com/article/military-space/

35375darpa-cancels-formation-flying-satellite-demo, 17 May 2013,
Accessed: 2013-09-20.

20. Sellers, J. J., Astore, W. J., Giffen, R. B., and Larson, W. J., Understanding
Space, McGraw-Hill, New York, NY, 2nd ed.

21. Mathieu, C. and Weigel, A. L., “Assessing the Flexibility Provided by Fraction-
ated Spacecraft,” Tech. rep., American Institute of Aeronautics and Astronautics,
Inc., 30 August - 1 September 2005.

22. DARPA, “System F6,” http://www.darpa.mil/our_work/tto/programs/

system_f6.aspx, Accessed: 2013-09-20.

23. Larson, W. J., Kirkpatrick, D., Sellers, J. J., Thomas, L. D., and Verma, D.,
Applied Space Systems Engineering , McGraw-Hill, New York, NY, 2009.

24. STK10, “STK Programming Interface Help,” .

25. Delgado, L. M., “Benefits Weighed of Disaggregation for Mili-
tary Space Systems,” http://www.spacepolicyonline.com/news/

benefits-weighed-of-disaggregation-for-military-space-systems,
30-Jan-2013, Accessed: 2013-10-07.

26. Gruss, M., “Senate Bill Would Kill DARPA’s SeeMe
Project,” http://www.spacenews.com/article/military-space/

36860senate-bill-would-kill-darpas-seeme-project, Aug 20, 2013,
Accessed: 2013-11-18.

137



27. London, J. R., Marley, A. B., and Weeks, D. J., “PRIME: Nanosat Demos For
The Tactical Land Warfighter,” http://www.milsatmagazine.com/story.php?

number=1752663203, March 2012, Accessed: 2013-11-18.

28. USASMDC/ARSTRAT, “NanoEye Fact Sheet,” http://www.smdc.army.mil/

FactSheets/NanoEye.pdf, Accessed: 2014-02-07.

29. Ingraham, S., “Dynamic Constellation Tasking and Management,” 2013.

30. USASMDC/ARSTRAT, “Kestrel Eye Fact Sheet,” http://www.smdc.army.

mil/FactSheets/KestrelEyeTC0112.pdf, Accessed: 2014-02-07.

31. “Army Small Business Innovation Research (SBIR) 13.2 Topic Descriptions,”
2013.

32. Taylor, T., “Low-Cost Tactical Space Capabilities,” http://smdsymposium.org/

wp-content/uploads/2013/09/Travis-Taylor-Presentation.pdf, 14 August
2013 2013, Accessed: 2014-02-07.

33. Ferster, W., “For a Revamped GPS, Biggest Savings Carry Biggest
Risks,” http://www.spacenews.com/article/military-space/

37315for-a-revamped-gps-biggest-savings-carry-biggest-risks, Sep.
23, 2013, Accessed: 2013-10-07.

34. Battistelli, E., Butera, F., Gonzalo, J., and Jimenez-Tunon, L., “FUEGOSAT:
The Space Payload for Fire Observation,” Galileo Avionica, 2005, pp. 134.

35. Emery, J. D., Oberg, E. M., Robertson, K. A., Sanchez, D. H., and Smuck, D. B.,
“The Utility and Logistics Impact of Small-Satellite Constellations in Matched
Inclination Orbits,” March 2005.

36. Mathieu, C. and Weigel, A. L., Assessing the Flexibility Provided by an On-
orbit Infrastructure of Fractionated Spacecraft , American Institute of Aeronautics
and Astronautics, 17 Oct 2005, 23; M1: 0; doi:10.2514/6.IAC-05-D3.3.01; M3:
doi:10.2514/6.IAC-05-D3.3.01.

37. USDOT and FAA, “Commercial Space Transportation Quarterly Launch Re-
port,” Tech. rep., Associate Administrator for Commercial Space Transportation,
4th Quarter 2002, Used for Launch Insurance figure.

38. Liu, X., Chen, Y., Chen, Y., and He, R., “Optimization of earth observation satel-
lite system based on parallel systems and computational experiments,” Journal
of Control Theory and Applications , Vol. 11, No. 2, 2013, pp. 200–206.

39. deSelding, P. B., “Debris-control Report Card Cites Improvement by Geo
Sat Owners,” http://www.spacenews.com/article/satellite-telecom/

37861debris-control-report-card-cites-improvement-by-geo-sat-owners,
Oct. 25, 2013.

40. Mathieu, C. and Weigel, A. L., “Assessing the Fractionated Spacecraft Concept,”
Space, 19-21 September 2006.

138



41. Arora, J. S., Introduction to Optimum Design, Academic Press, New York, NY,
3rd ed., 2012.

42. Patalia, T. P. and Kulkarni, G. R., “Behavioral analysis of genetic algorithm
for function optimization,” Computational Intelligence and Computing Research
(ICCIC), 2010 IEEE International Conference on, 2010, pp. 1–5.

43. Hu, X., “PSO Tutorial,” http://www.swarmintelligence.org/tutorials.php,
2006, Accessed: 2014-2-28.

44. Reyes-Sierra, M. and Coello-Coello, C. A., “Multi-Objective particle swarm opti-
mizers: A survey of the state-of-the-art,” International Journal of Computational
Intelligence Research, Vol. 2, No. 3, 2006, pp. 287–308.

45. Sales, J., “Trajectory Optimization for Spacecraft Collision Avoidance,” 2013.

46. Irvine, J. M., “National Imagery Interpretability Rating Scales (NIIRS): Overview
and Methodology,” Airborne Reconnaissance XXI , Vol. 3128, November 21, 1997,
p. 93.

47. NASA, “Landsat Science Data Users Handbook,” March 11, 2011, Accessed:
2014-3-10.

48. Werner, D., “Earth Science and Climate Monitoring —
Scientists Study How Satellites Could Improve Volcano
Forecasts,” http://www.spacenews.com/article/features/

37249earth-science-and-climate-monitoring-scientists-study-how-satellites-could,
16 Sep 2013, Accessed: 2013-09-20.

49. Company, R., “Joint Polar Satellite System Common Ground System,” http:

//www.raytheon.com/capabilities/products/jpss/index.html, 2013, Ac-
cessed: 2013-10-15.

50. Company, R., “Joint Polar Satellite System Budget Recommendations,” http://

www.raytheon.com/capabilities/products/jpss/budget/index.html, 2013,
Accessed: 2013-10-15.

51. Kramer, H. J., “Ikonos-2,” http://www.eoportal.org/directory/pres_

Ikonos2.html, 24 Jan 2008, Accessed: 2013-01-07.

52. Sales, J., “STK Library,” 2013.

53. Matlab, “Matlab help,” .

54. Auelmann, R. R., “Image Quality Metrics,” Richard R. Auelmann Techical
Archive, 5 Nov 2012.

55. Gruss, M., 7 Mar 2014.

56. Thurman, S. T. and Fienup, J. R., “Analysis of the General Image Quality Equa-
tion,” Proc. SPIE , Vol. 6978, March 25, 2008, Accessed: 2013-12-09.

139



Vita

Evelyn Abbate graduated from Egg Harbor Township High School in New Jersey in

2008, and entered undergraduate studies at the United States Air Force Academy.

While a cadet, she was qualified in all crew positions for FalconSat-3, and also

operated communications and antenna systems for FalconSat-5. In her free time, she

played violin with the Cadet Orchestra and served as cadet in charge of the Aikido

club. As a senior with a minor in Japanese, she received the opportunity to spend a

semester at the Japanese National Defense Academy. She graduated with a

commission to the United States Air Force and a Bachelor of Science degree in

Astronautical Engineering in 2012. In 2014, she graduated from the Masters

program at the Air Force Institute of Technology, and has been assigned to the

National Reconnaissance Office (NRO) in Chantilly, VA.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

140



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

Standard

27-03-2014 Master's Thesis Oct 2012 - Mar 2014

Disaggregated Imaging Spacecraft Constellation Optimization with a Genetic
Algorithm

Abbate, Evelyn A., 2Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENY-14-M-02

Intentionally Left Blank

Distribution A. Approved for Public Release; Distribution Unlimited

This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

This research is an extension of work by Major Robert Thompson, who uses a genetic algorithm to optimize certain parameters of a
disaggregated constellation for most cost-effective coverage. This work looks at imaging sensor coverage of a specific target deck
assumed to exist in the Middle East. Parameters varied in this optimization affect Walker constellation characteristics, orbital
elements, and sensor size. Walker parameter variables are number of planes, number of satellites per plane, true anomaly spread,
and RAAN increment. All classical orbital elements are variable, although a circular, low-Earth orbit is assumed. Sensor size is
varied dependent upon sensor diameter. These parameters are applied to constellations of small satellites and large satellites.
The Unmanned Spacecraft Cost Model (USCM) and the Small Spacecraft Cost Model (SSCM) are used to roughly determine the
cost of each proposed mission. The sensor effectiveness is determined by the General Imaging Quality Equation (GIQE).

Disaggregation, optimization, Earth observation, space architecture, responsive space

UU UU UU UU 156

Dr. Jonathan T. Black AFIT/ENY

(937) 785-3636 x4578 Jonathan.Black@afit.edu




